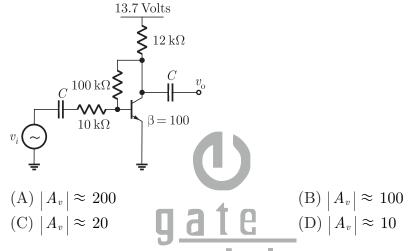

CHAPTER 8

ANALOG & DIGITAL ELECTRONICS

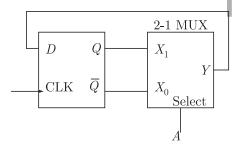
PAGE 420

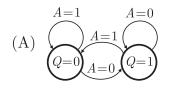

ANALOG & DIGITAL ELECTRONICS

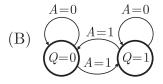

In this circuit, the race around

- (A) does not occur
- (B) occur when CLK = 0
- (C) occur when CLK = 1 and A = B = 1
- (D) occur when CLK = 1 and A = B = 0

YEAR 2012

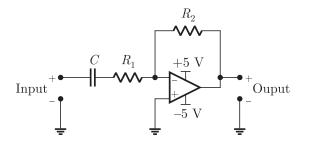

TWO MARKS





MCQ 8.6

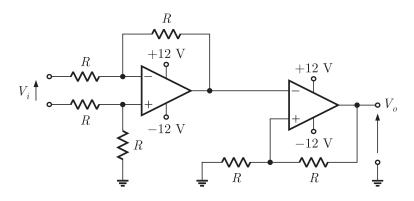
8.6 The state transition diagram for the logic circuit shown is



The circuit shown is a **MCQ 8.7**

- (A) low pass filter with $f_{3dB} = \frac{1}{(R_1 + R_2)C}$ rad/s
- (B) high pass filter with $f_{3dB} = \frac{1}{R_1 C} \text{ rad/s}$

(C) low pass filter with
$$f_{3dB} = \frac{1}{R_1 C} \text{ rad/s}$$

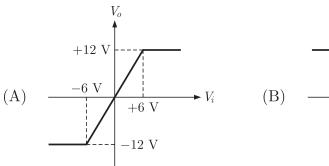

(D) high pass filter with $f_{3dB} = \frac{1}{(R_1 + R_2) C} \text{ rad/s}$

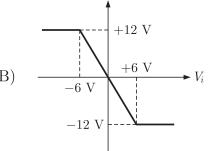
YEAR 2011

ONE MARK

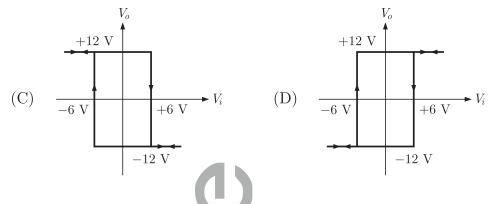
- A low-pass filter with a cut-off frequency of 30 Hz is cascaded with a high **MCQ 8.8** pass filter with a cut-off frequency of 20 Hz. The resultant system of filters will function as help
 - (A) an all pass filter
 - (B) an all stop filter
 - (C) an band stop (band-reject) filter
 - (D) a band pass filter

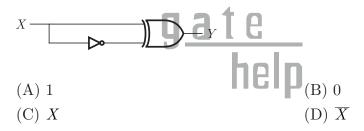
MCQ 8.9




The CORRECT transfer characteristic is

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		


CHAP 8

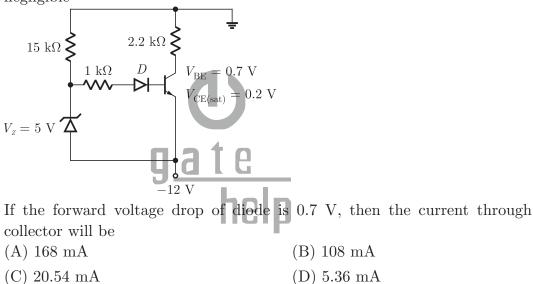


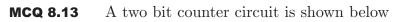
 V_o

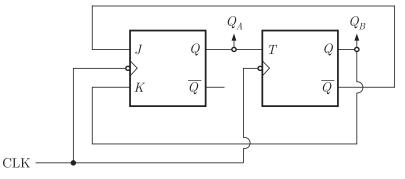
MCQ 8.10 The output Y of the logic circuit given below is

YEAR 2011

TWO MARKS

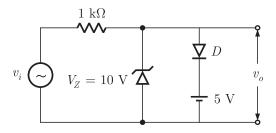

MCQ 8.11 A portion of the main program to call a subroutine SUB in an 8085 environment is given below.


: LXI D, DISP LP : CALL SUB LP+3 :

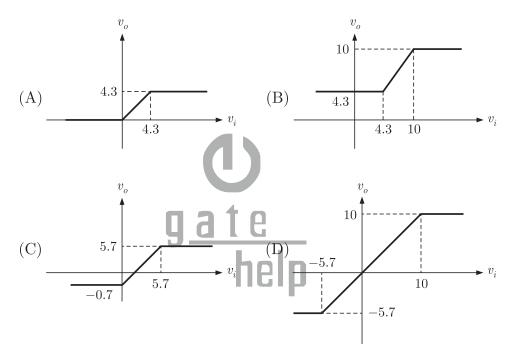

It is desired that control be returned to LP+DISP+3 when the RET instruction is executed in the subroutine. The set of instructions that precede the RET instruction in the subroutine are

CHAP 8		ANALOG & DIGITAL ELECTRONICS	PAGE 423
	POP D (A) DAD H PUSH D	$(B) \begin{array}{c} POP & H \\ DAD & D \\ INX & H \\ INX & H \\ INX & H \\ PUSH & H \end{array}$	
	POP H (C) DAD D PUSH H	XTHL INX D (D) INX D INX D XTHL	

MCQ 8.12 The transistor used in the circuit shown below has a β of 30 and I_{CBO} is negligible

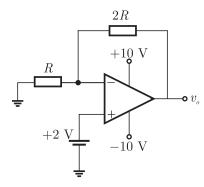

It the state $Q_A Q_B$ of the counter at the clock time t_n is '10' then the state $Q_A Q_B$ of the counter at $t_n + 3$ (after three clock cycles) will be (A) 00 (B) 01

(D) 11


ANALOG & DIGITAL ELECTRONICS

CHAP 8

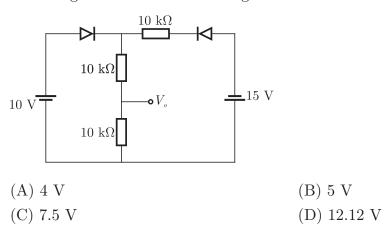
MCQ 8.14 A clipper circuit is shown below.


Assuming forward voltage drops of the diodes to be 0.7 V, the input-output transfer characteristics of the circuit is

YEAR 2010

ONE MARK

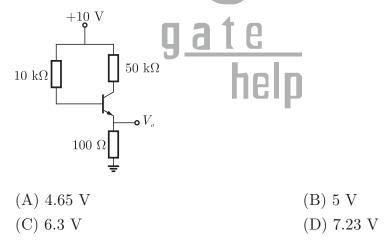
GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

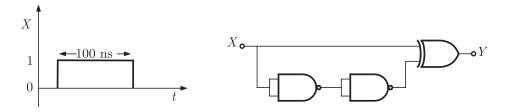

PAGE 424

ANALOG & DIGITAL ELECTRONICS

PAGE 425

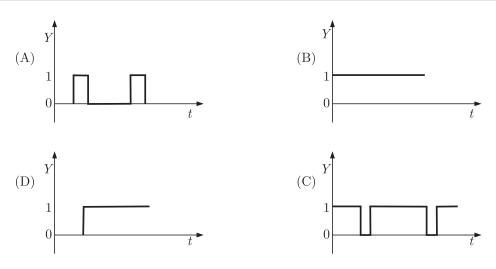
(A) 4 V	(B) 6 V
(C) 7.5 V	(D) 12.12 V




YEAR 2010

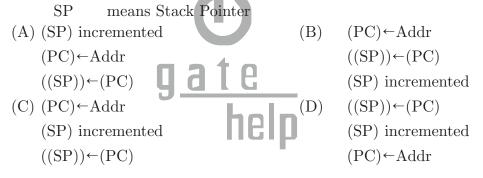
TWO MARKS

MCQ 8.17 The transistor circuit shown uses a silicon transistor with $V_{BE} = 0.7$, $I_C \approx I_E$ and a dc current gain of 100. The value of V_0 is


MCQ 8.18 The TTL circuit shown in the figure is fed with the waveform X (also shown). All gates have equal propagation delay of 10 ns. The output Y of the circuit is

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		

CHAP 8


PAGE 426

MCQ 8.19 When a "CALL Addr" instruction is executed, the CPU carries out the following sequential operations internally :

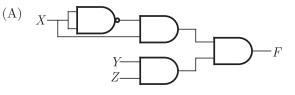
Note: (R) means content of register R

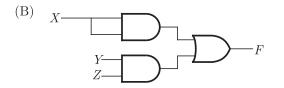
- ((R)) means content of memory location pointed to by R.
- PC means Program Counter

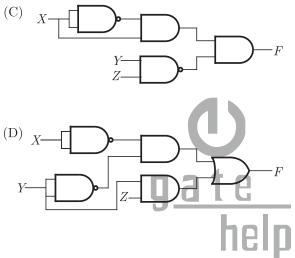
Statement For Linked Answer Questions: 6 & 7

The following Karnaugh map represents a function F.

F X	Z_{00}	01	11	10
0	1	1	1	0
1	0	0	1	0

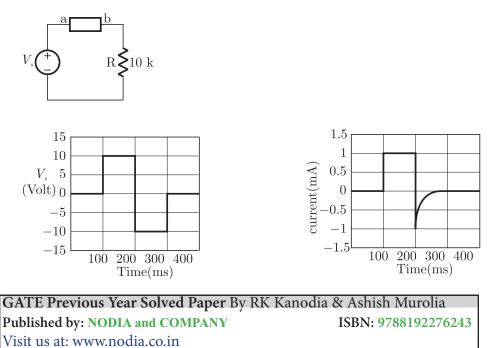

MCQ 8.20	A minimized form of the function F is	
	(A) $F = \overline{X} Y + YZ$	(B) $F = \overline{X} \overline{Y} + YZ$
	(C) $F = \overline{X} \overline{Y} + Y \overline{Z}$	(D) $F = \overline{X} \overline{Y} + \overline{Y} Z$

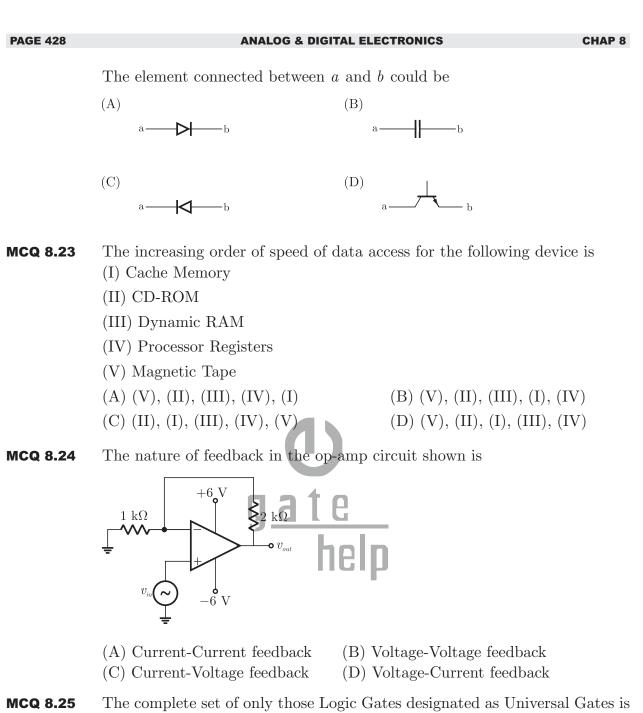

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia				
Published by: NODIA and COMPANY	ISBN: 9788192276243			
Visit us at: www.nodia.co.in				


ANALOG & DIGITAL ELECTRONICS

PAGE 427

MCQ 8.21 Which of the following circuits is a realization of the above function F?

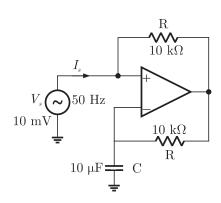



YEAR 2009

ONE MARK

MCQ 8.22 The following circuit has a source voltage V_s as shown in the graph. The current through the circuit is also shown.

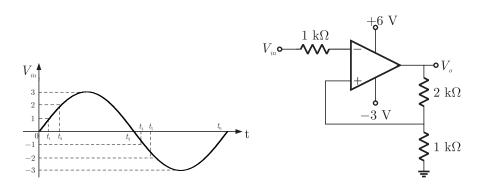
CHAP 8



- (A) NOT, OR and AND Gates
- (B) XNOR, NOR and NAND Gates
- (C) NOR and NAND Gates
- (D) XOR, NOR and NAND Gates

YEAR 2009

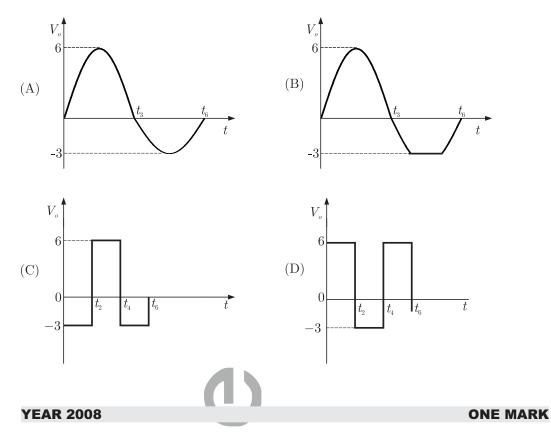
TWO MARKS


MCQ 8.26 The following circuit has $R = 10 \text{ k}\Omega$, $C = 10 \mu\text{F}$. The input voltage is a sinusoidal at 50 Hz with an rms value of 10 V. Under ideal conditions, the current I_{s} from the source is

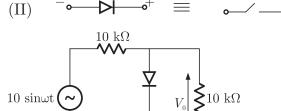
- (A) 10π mA leading by 90° (B) 20π mA leading by 90° (C) 10π mA leading by 90° (D) 10π mA lagging by 90°
- **MCQ 8.27** Transformer and emitter follower can both be used for impedance matching at the output of an audio amplifier. The basic relationship between the input power P_{in} and output power P_{out} in both the cases is (A) $P_{in} = P_{out}$ for both transformer and emitter follower
 - (B) $P_{in} > P_{out}$ for both transformer and emitter follower
 - (C) $P_{in} < P_{out}$ for transformer and $P_{in} = P_{out}$ for emitter follower
 - (D) $P_{in} = P_{out}$ for transformer and $P_{in} < P_{out}$ for emitter follower
- **MCQ 8.28** In an 8085 microprocessor, the contents of the Accumulator, after the following instructions are executed will become

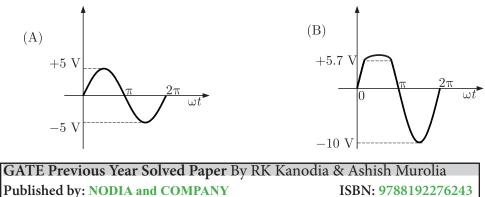
	XRA	А	hein
	MVI	B, F0 H	help
	SUB	В	
(A) 01 H			(B) 0F H
(C) F0 H			(D) 10 H

MCQ 8.29 An ideal op-amp circuit and its input wave form as shown in the figures. The output waveform of this circuit will be



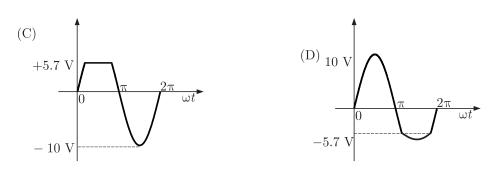
GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		


PAGE 430



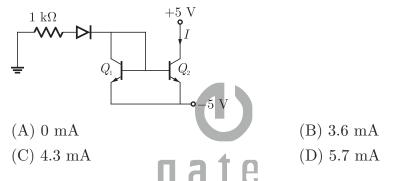
- The equivalent circuits of a diode, during forward biased and reverse biased **MCQ 8.30** conditions, are shown in the figure.
 - (I)

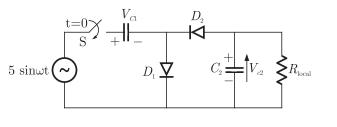
5 V


If such a diode is used in clipper circuit of figure given above, the output voltage V_0 of the circuit will be

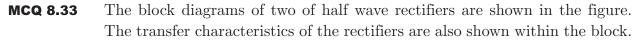
Visit us at: www.nodia.co.in

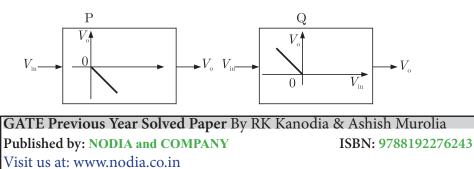
ISBN: 9788192276243



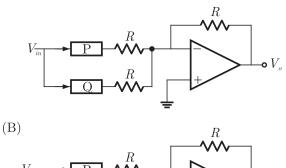

YEAR 2008

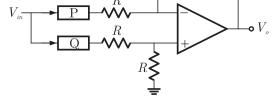

TWO MARKS


MCQ 8.31 Two perfectly matched silicon transistor are connected as shown in the figure assuming the β of the transistors to be very high and the forward voltage drop in diodes to be 0.7 V, the value of current I is

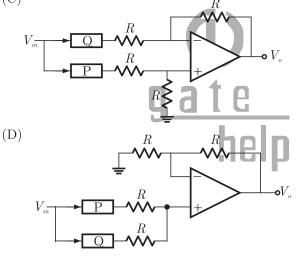


MCQ 8.32 In the voltage doubler circuit shown in the figure, the switch 'S' is closed at t = 0. Assuming diodes D_1 and D_2 to be ideal, load resistance to be infinite and initial capacitor voltages to be zero. The steady state voltage across capacitor C_1 and C_2 will be

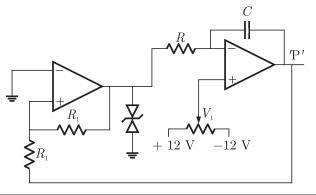

PAGE 432


ANALOG & DIGITAL ELECTRONICS

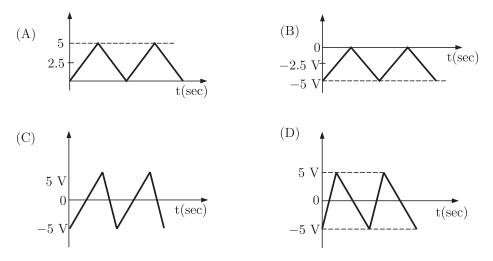
CHAP 8


It is desired to make full wave rectifier using above two half-wave rectifiers. The resultants circuit will be

 (\mathbf{A})



(C)


MCQ 8.34 A waveform generator circuit using OPAMPs is shown in the figure. It produces a triangular wave at point 'P' with a peak to peak voltage of 5 V for $V_i = 0$ V.

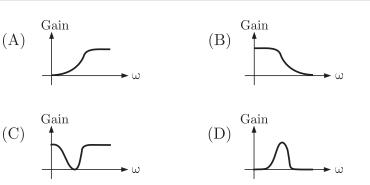
CHAP 8

PAGE 433

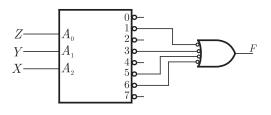
If the voltage V_i is made +2.5 V, the voltage waveform at point 'P' will become

Statement for Linked Answer Questions 21 and 22.

A general filter circuit is shown in the figure :



MCQ 8.35	If $R_1 = R_2 = R_A$ and $R_3 = R_4 = R_B$, the	ne circuit acts as a
	(A) all pass filter	(B) band pass filter
	(C) high pass filter	(D) low pass filter


The output of the filter in Q.21 is given to the circuit in figure : **MCQ 8.36** The gain v/s frequency characteristic of the output (v_o) will be

MCQ 8.37 A 3-line to 8-line decoder, with active low outputs, is used to implement a 3-variable Boolean function as shown in the figure

The simplified form of Boolean function F(A, B, C) implemented in 'Product of Sum' form will be

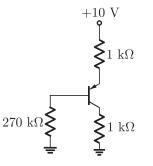
(A)
$$(X + Z)(\overline{X} + \overline{Y} + \overline{Z})(Y + Z)$$

(B) $(\overline{X} + \overline{Z})(X + Y + Z)(\overline{Y} + \overline{Z})$
(C) $(\overline{X} + \overline{Y} + Z)(\overline{X} + Y + Z)(X + \overline{Y} + Z)(X + Y + \overline{Z})$
(D) $(\overline{X} + \overline{Y} + Z)(\overline{X} + Y + \overline{Z})(X + \overline{Y} + Z)(X + \overline{Y} + \overline{Z})$

MCQ 8.38 The content of some of the memory location in an 8085 accumulator based system are given below

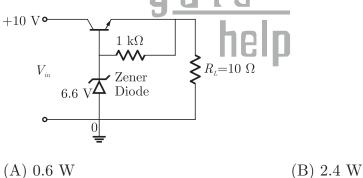
Address	Content
•••	•••
26FE	00
26FF	01
2700	02
2701	03
2702	04
• • •	•••

The content of stack (SP), program counter (PC) and (H,L) are 2700 H, 2100 H and 0000 H respectively. When the following sequence of instruction are executed.

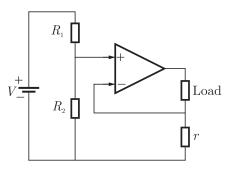

2100 H: DAD SP

2101 H: PCHL

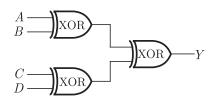
the content of (SP) and (PC) at the end of execution will be


GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY ISBN: 9788192276243		
Visit us at: www.nodia.co.in		

CHAP 8	ANALOG & DIGITAL ELECTRONICS		
	(A) $PC = 2102 H, SP = 2700 H$ (C) $PC = 2800 H, SP = 26FE H$	(B) $PC = 2700 H, SP = 2$ (D) $PC = 2A02 H, SP = 2$	
	YEAR 2007	O	IE MARK
MCQ 8.39	The common emitter forward current g	ain of the transistor shown is	$\beta_F = 100$


The transistor is operating in

- (A) Saturation region
- (C) Reverse active region
- (B) Cutoff region
- (D) Forward active region
- **MCQ 8.40** The three-terminal linear voltage regulator is connected to a 10 Ω load resistor as shown in the figure. If V_{in} is 10 V, what is the power dissipated in the transistor ?

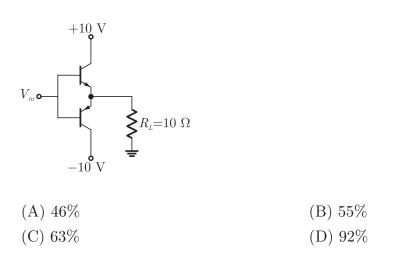


- (C) 4.2 W (D) 5.4 W
- MCQ 8.41

The circuit shown in the figure is

- (A) a voltage source with voltage $\frac{rV}{R_1 \parallel R_2}$ (B) a voltage source with voltage $\frac{r \parallel R_2}{R_1} V$ (C) a current source with current $\left(\frac{r \parallel R_2}{R_1 + R_2}\right) \frac{V}{r}$ (D) a current source with current $\left(\frac{R_2}{R_1 + R_2}\right) \frac{V}{r}$
- **MCQ 8.42** A, B, C and D are input, and Y is the output bit in the XOR gate circuit of the figure below. Which of the following statements about the sum S of A, B, C, D and Y is correct?

YEAR 2007

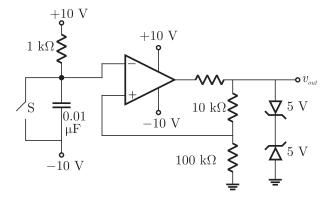

(A) S is always with zero or odd

(B) S is always either zero or even

- (C) S = 1 only if the sum of A, B, C and D is even
- (D) S = 1 only if the sum of A, B, C and D is odd

TWO MARKS

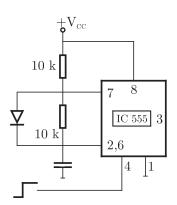
MCQ 8.43 The input signal V_{in} shown in the figure is a 1 kHz square wave voltage that alternates between +7 V and -7 V with a 50% duty cycle. Both transistor have the same current gain which is large. The circuit delivers power to the load resistor R_L . What is the efficiency of this circuit for the given input ? choose the closest answer.


GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

CHAP 8

ANALOG & DIGITAL ELECTRONICS

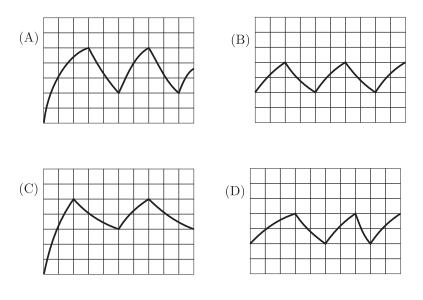
PAGE 437


MCQ 8.44 The switch S in the circuit of the figure is initially closed, it is opened at time t = 0. You may neglect the zener diode forward voltage drops. What is the behavior of v_{out} for t > 0?

- (A) It makes a transition from -5 V to +5 V at $t = 12.98 \,\mu s$
- (B) It makes a transition from -5 V to +5 V at $t = 2.57 \,\mu s$
- (C) It makes a transition from +5 V to -5 V at $t = 12.98 \,\mu s$
- (D) It makes a transition from +5 V to -5 V at $t = 2.57 \ \mu s$
- MCQ 8.45
 The Octal equivalent of HEX and number AB.CD is

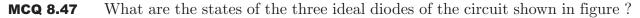
 (A) 253.314
 G at e (B) 253.632

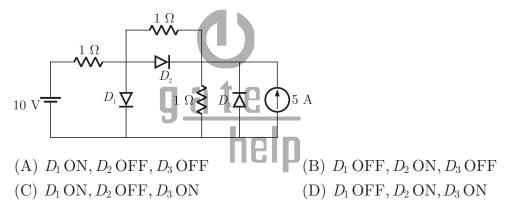
 (C) 526.314
 G at e (D) 526.632
- **MCQ 8.46** IC 555 in the adjacent figure is configured as an astable multi-vibrator. It is enabled to to oscillate at t = 0 by applying a high input to pin 4. The pin description is : 1 and 8-supply; 2-trigger; 4-reset; 6-threshold 7-discharge. The waveform appearing across the capacitor starting from t = 0, as observed on a storage CRO is

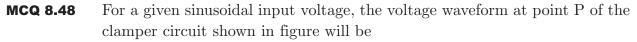

GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

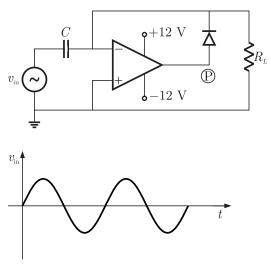
CHAP 8

PAGE 438

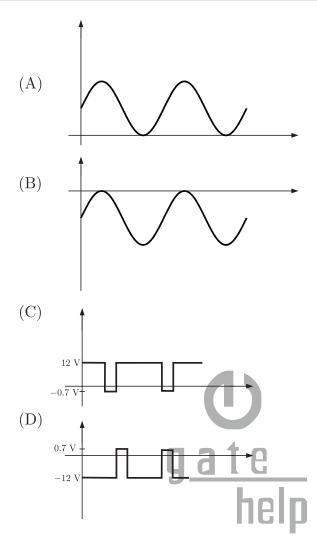

ANALOG & DIGITAL ELECTRONICS

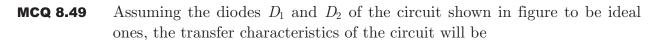

CHAP 8

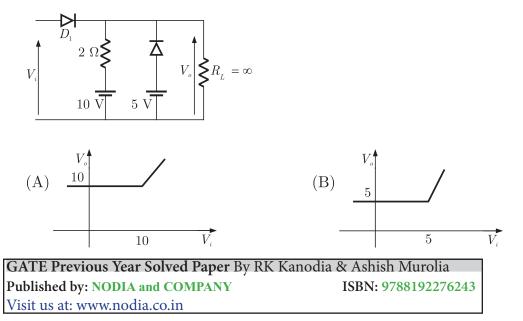



YEAR 2006

ONE MARK

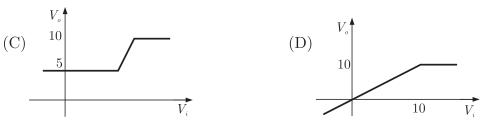


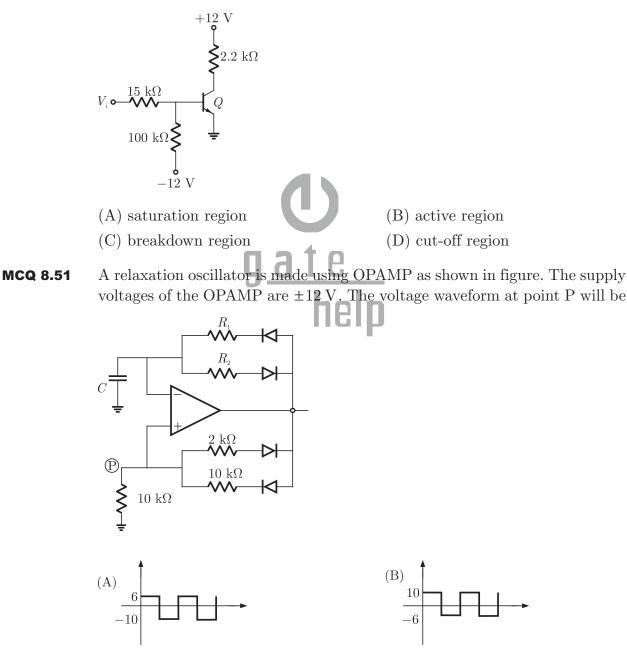

ANALOG & DIGITAL ELECTRONICS

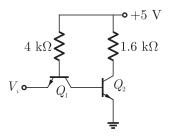

PAGE 439

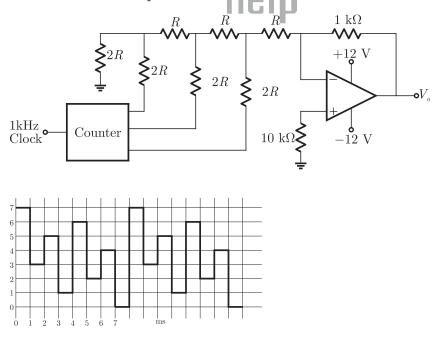
YEAR 2006

TWO MARKS




PAGE 440

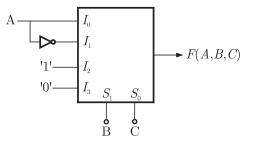

MCQ 8.50 Consider the circuit shown in figure. If the β of the transistor is 30 and I_{CBO} is 20 mA and the input voltage is +5 V, the transistor would be operating in



MCQ 8.52 A TTL NOT gate circuit is shown in figure. Assuming $V_{BE} = 0.7$ V of both the transistors, if $V_i = 3.0$ V, then the states of the two transistors will be

- (A) Q_1 ON and Q_2 OFF
- (B) Q_1 reverse ON and Q_2 OFF
- (C) Q_1 reverse ON and Q_2 ON
- (D) Q_1 OFF and Q_2 reverse ON
- **MCQ 8.53** A student has made a 3-bit binary down counter and connected to the R-2R ladder type DAC, [Gain $= (-1 k\Omega/2R)$] as shown in figure to generate a staircase waveform. The output achieved is different as shown in figure. What could be the possible cause of this error ?

(A) The resistance values are incorrect option.


GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia			
Published by: NODIA and COMPANY ISBN: 9788192276243			
Visit us at: www.nodia.co.in			

ANALOG & DIGITAL ELECTRONICS

(B) The counter is not working properly

PAGE 442

- (C) The connection from the counter of DAC is not proper
- (D) The R and 2R resistance are interchanged
- **MCQ 8.54** A 4×1 MUX is used to implement a 3-input Boolean function as shown in figure. The Boolean function F(A, B, C) implemented is

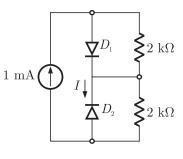
(A) $F(A, B, C) = \Sigma(1, 2, 4, 6)$ (B) $F(A, B, C) = \Sigma(1, 2, 6)$ (C) $F(A, B, C) = \Sigma(2, 4, 5, 6)$ (D) $F(A, B, C) = \Sigma(1, 5, 6)$

MCQ 8.55 A software delay subroutine is written as given below :

DELAY :	MVI	H, 255D
	MVI	L, 255D
LOOP :	DCR	L
	JNZ	LOOP
	DCR	
	JNZ	LOOP
How many	times DC	R L instruction will be executed ?
(A) 255		(B) 510
(C) 65025		(D) 65279

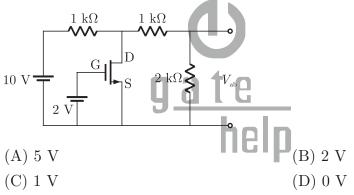
MCQ 8.56 In an 8085 A microprocessor based system, it is desired to increment the contents of memory location whose address is available in (D,E) register pair and store the result in same location. The sequence of instruction is

(A) XCHG	(B)	XCHG
INR M		INX H
(C) INX D	(D)	INR M
XCHG		XCHG

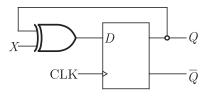

YEAR 2005

ONE MARK

MCQ 8.57 Assume that D_1 and D_2 in figure are ideal diodes. The value of current is


GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia			
Published by: NODIA and COMPANY	ISBN: 9788192276243		
Visit us at: www.nodia.co.in			

PAGE 443

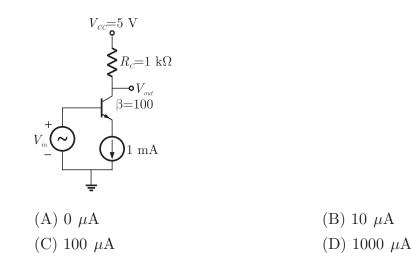

(A) 0 mA	(B) 0.5 mA
(C) 1 mA	(D) 2 mA

- **MCQ 8.58** The 8085 assembly language instruction that stores the content of H and L register into the memory locations $2050_{\rm H}$ and $2051_{\rm H}$, respectively is (A) SPHL 2050_H (B) SPHL 2051_H (D) STAX 2050_H (C) SHLD 2050_H
- Assume that the N-channel MOSFET shown in the figure is ideal, and that **MCQ 8.59** its threshold voltage is +1.0 V the voltage V_{ab} between nodes a and b is

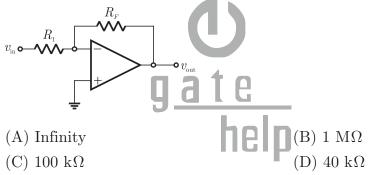
The digital circuit shown in the figure works as

(A) JK flip-flop (C) T flip-flop

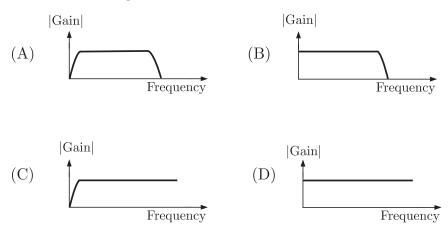
(D) Ring counter


YEAR 2005

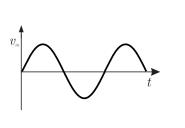
TWO MARKS

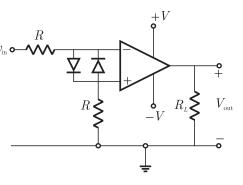

The common emitter amplifier shown in the figure is biased using a 1 mA MCQ 8.61 ideal current source. The approximate base current value is

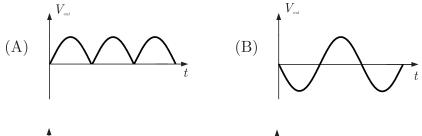
GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia			
Published by: NODIA and COMPANY ISBN: 9788192276243			
Visit us at: www.nodia.co.in			

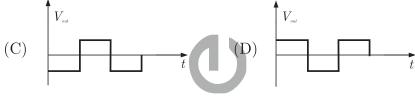

CHAP 8

MCQ 8.62 Consider the inverting amplifier, using an ideal operational amplifier shown in the figure. The designer wishes to realize the input resistance seen by the small-signal source to be as large as possible, while keeping the voltage gain between -10 and -25. The upper limit on R_F is 1 M Ω . The value of R_1 should be

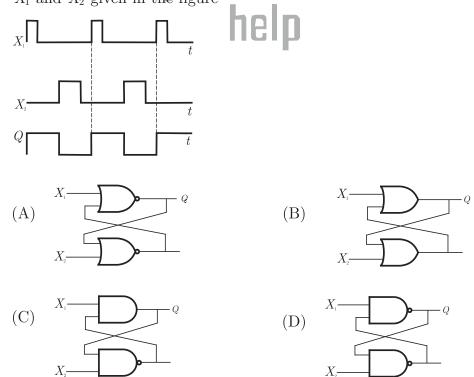



MCQ 8.63 The typical frequency response of a two-stage direct coupled voltage amplifier is as shown in figure

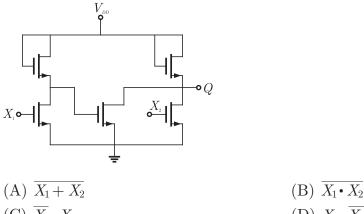



MCQ 8.64 In the given figure, if the input is a sinusoidal signal, the output will appear as shown

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia			
Published by: NODIA and COMPANY ISBN: 9788192276243			
Visit us at: www.nodia.co.in			



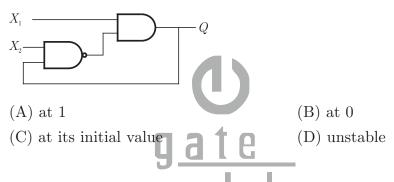
G	GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
	ublished by: NODIA and COMPANY	ISBN: 9788192276243	
V	isit us at: www.nodia.co.in		

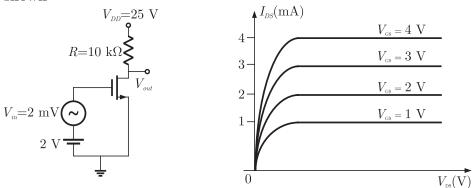

ANALOG & DIGITAL ELECTRONICS

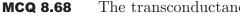
CHAP 8

MCQ 8.66

PAGE 446


If X_1 and X_2 are the inputs to the circuit shown in the figure, the output Qis


MCQ 8.67

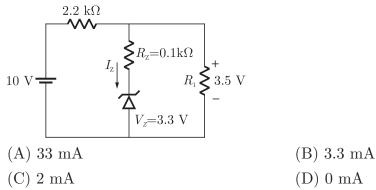

In the figure, as long as $X_1 = 1$ and $X_2 = 1$, the output Q remains

Data for Q. 68 and Q. 69 are given below. Solve the problems and choose the correct option.

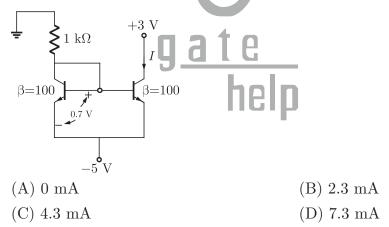
Assume that the threshold voltage of the N-channel MOSFET shown in figure is + 0.75 V. The output characteristics of the MOSFET are also shown

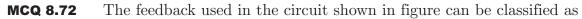
The transconductance of the MOSFET is

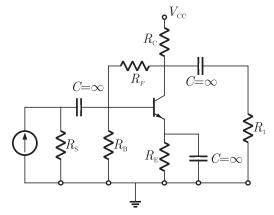
- (A) 0.75 ms
- (C) 2 ms


(B) 1 ms(D) 10 ms

CHAP 8	ANALOG & DIGITAL ELECTRONICS		PAGE 447
MCQ 8.69	The voltage gain of the amplifier is		
	(A) + 5	(B) - 7.5	
	(C) + 10	(D) - 10	


YEAR 2004


ONE MARK

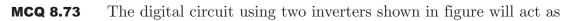

MCQ 8.70 The current through the Zener diode in figure is

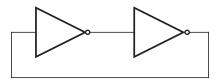
MCQ 8.71Two perfectly matched silicon transistor are connected as shown in figure.The value of the current I is

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	

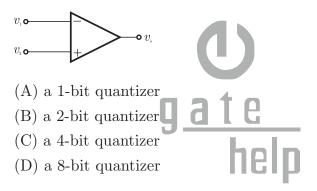
ANALOG & DIGITAL ELECTRONICS

CHAP 8

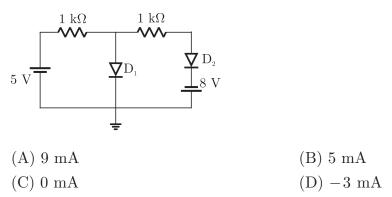

(A) shunt-series feedback


PAGE 448

(B) shunt-shunt feedback

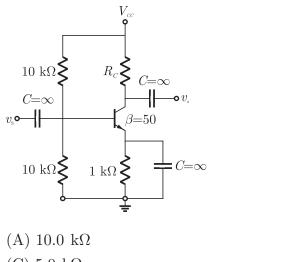

(C) series-shunt feedback

(D) series-series feedback


- (A) a bistable multi-vibrator
- (B) an astable multi-vibrator
- (C) a monostable multi-vibrator
- (D) an oscillator
- **MCQ 8.74** The voltage comparator shown in figure can be used in the analog-to-digital conversion as

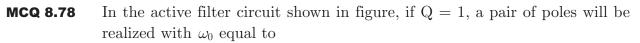
YEAR 2004

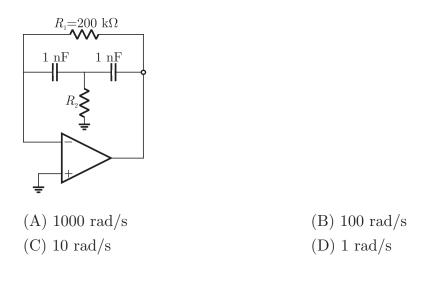
TWO MARKS


MCQ 8.75 Assuming that the diodes are ideal in figure, the current in diode D_1 is

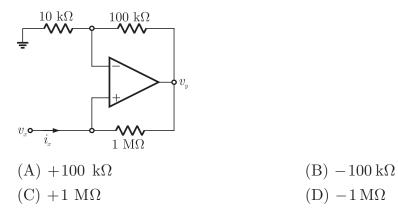
MCQ 8.76 The trans-conductance g_m of the transistor shown in figure is 10 mS. The value of the input resistance R_{in} is

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	


PAGE 449



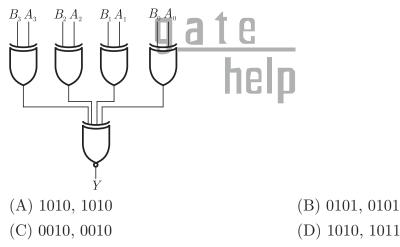
MCQ 8.77 The value of R for which the PMOS transistor in figure will be biased in linear region is

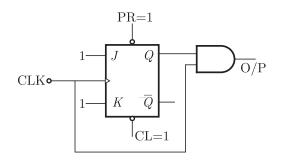


GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	

ANALOG & DIGITAL ELECTRONICS

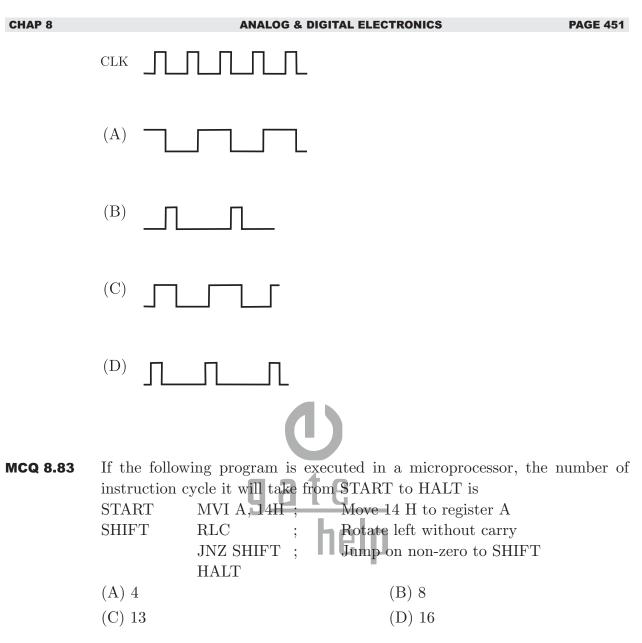
CHAP 8


MCQ 8.79 The input resistance $R_{in} = v_x/i_x$ of the circuit in figure is

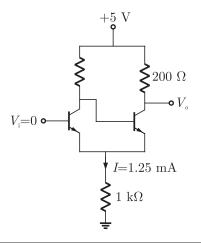

MCQ 8.80 The simplified form of the Boolean expression $Y = (\overline{A} \cdot BC + D)(\overline{A} \cdot D + \overline{B} \cdot \overline{C})$ can be written as

(A) $\overline{A} \cdot D + \overline{B} \cdot \overline{C} \cdot D$	(B) $AD + B \cdot \overline{C} \cdot D$
(C) $(\overline{A} + D)(\overline{B} \cdot C + \overline{D})$	(D) $A \cdot \overline{D} + BC \cdot \overline{D}$

MCQ 8.81 A digit circuit which compares two numbers $A_3A_2A_1A_0$ and $B_3B_2B_1B_0$ is shown in figure. To get output Y=0, choose one pair of correct input numbers.



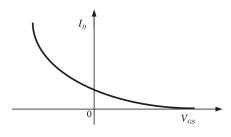
MCQ 8.82 The digital circuit shown in figure generates a modified clock pulse at the output. Choose the correct output waveform from the options given below.



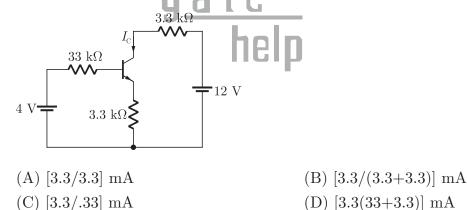
GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

PAGE 450

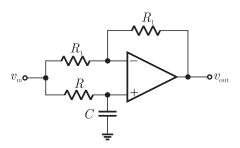
MCQ 8.84 In the Schmitt trigger circuit shown in figure, if $V_{CE(sat)} = 0.1 \text{ V}$, the output logic low level (V_{OL}) is



PAGE 452		ANALOG & DIGITAL ELECTRONICS	CHAP 8
	(A) 1.25 V	(B) $1.35 V$	
	(C) 2.50 V	(D) 5.00 V	


YEAR 2003

ONE MARK


MCQ 8.85 The variation of drain current with gate-to-source voltage $(I_D - V_{GS}$ characteristic) of a MOSFET is shown in figure. The MOSFET is

- (A) an n-channel depletion mode device
- (B) an n-channel enhancement mode device
- (C) an p-channel depletion mode device
- (D) an p-channel enhancement mode device
- **MCQ 8.86** In the circuit of figure, assume that the transistor has $h_{fe} = 99$ and $V_{BE} = 0.7$ V. The value of collector current I_C of the transistor is approximately

MCQ 8.87 For the circuit of figure with an ideal operational amplifier, the maximum phase shift of the output v_{out} with reference to the input v_{in} is

CHAP 8		ANALOG & DIGITAL ELECTRONICS	PAGE 453
	(A) 0°	(B) -90°	
	$(C) + 90^{\circ}$	(D) $\pm 180^{\circ}$	

MCQ 8.88 Figure shows a 4 to 1 MUX to be used to implement the sum S of a 1-bit full adder with input bits P and Q and the carry input C_{in} . Which of the following combinations of inputs to I_0, I_1, I_2 and I_3 of the MUX will realize the sum S?

$$\begin{array}{c|c}
I_{0} \\
I_{1} & 4:1 \\
I_{2} & \text{MUX} \\
I_{3} & S_{1} & S_{0} \\
\hline
P & Q
\end{array}$$

(A)
$$I_0 = I_1 = C_{in}; I_2 = I_3 = \overline{C}_{in}$$
 (B) $I_0 = I_1 = \overline{C}_{in}; I_2 = I_3 = C_{in}$
(C) $I_0 = I_3 = C_{in}; I_1 = I_2 = \overline{C}_{in}$ (D) $I_0 = I_3 = \overline{C}_{in}; I_1 = I_2 = C_{in}$

- MCQ 8.89 When a program is being executed in an 8085 microprocessor, its Program Counter contains
 - (A) the number of instructions in the current program that have already been executed
 - (B) the total number of instructions in the program being executed.
 - (C) the memory address of the instruction that is being currently executed
 - (D) the memory address of the instruction that is to be executed next

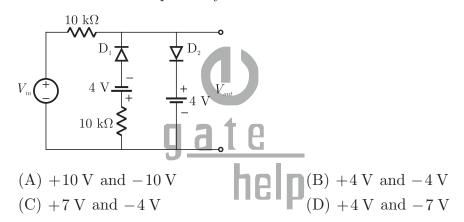
YEAR 2003

MCQ 8.90 For the n-channel enhancement MOSFET shown in figure, the threshold voltage $V_{th} = 2$ V. The drain current I_D of the MOSFET is 4 mA when the drain resistance R_D is 1 k Ω . If the value of R_D is increased to 4 k Ω , drain current I_D will become

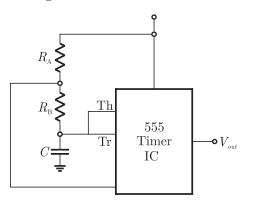
(A) 2.8 mA	(B) 2.0 mA
(C) 1.4 mA	(D) 1.0 mA


GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	

TWO MARKS


ANALOG & DIGITAL ELECTRONICS

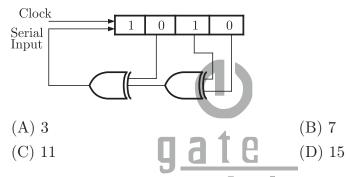
CHAP 8


MCQ 8.91 Assuming the operational amplifier to be ideal, the gain v_{out}/v_{in} for the circuit shown in figure is

MCQ 8.92 A voltage signal $10 \sin \omega t$ is applied to the circuit with ideal diodes, as shown in figure, The maximum, and minimum values of the output waveform V_{out} of the circuit are respectively

MCQ 8.93 The circuit of figure shows a 555 Timer IC connected as an astable multivibrator. The value of the capacitor C is 10 nF. The values of the resistors R_A and R_B for a frequency of 10 kHz and a duty cycle of 0.75 for the output voltage waveform are

(A)
$$R_A = 3.62 \text{ k}\Omega, R_B = 3.62 \text{ k}\Omega$$


GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

PAGE 454

CHAP 8

PAGE 455

- (B) $R_A = 3.62 \text{ k}\Omega, R_B = 7.25 \text{ k}\Omega$ (C) $R_A = 7.25 \,\mathrm{k\Omega}, R_B = 3.62 \,\mathrm{k\Omega}$
- (D) $R_A = 7.25 \,\mathrm{k}\Omega, R_B = 7.25 \,\mathrm{k}\Omega$
- The boolean expression $\overline{X} Y \overline{Z} + \overline{XYZ} + XY\overline{Z} + XY\overline{Z} + XYZ$ can be **MCQ 8.94** simplified to (B) $XY + \overline{Y}Z + Y\overline{Z}$ (A) $X\overline{Z} + \overline{X}Z + YZ$ (D) $\overline{XY} + Y\overline{Z} + \overline{XZ}$ (C) $\overline{X}Y + YZ + XZ$
- **MCQ 8.95** The shift register shown in figure is initially loaded with the bit pattern 1010. Subsequently the shift register is clocked, and with each clock pulse the pattern gets shifted by one bit position to the right. With each shift, the bit at the serial input is pushed to the left most position (msb). After how many clock pulses will the content of the shift register become 1010 again?

An X-Y flip-flop, whose Characteristic Table is given below is to be **MCQ 8.96** implemented using a J-K flip flop **G**

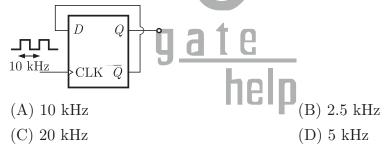
X	Y	Q_{n+1}
0	0	1
0	1	Q_n
1	0	\overline{Q}_n
1	1	0

(A) $J = X, K = \overline{Y}$	(B) $J = \overline{X}, K = Y$
(C) $J = Y, K = \overline{X}$	(D) $J = \overline{Y}, K = X$

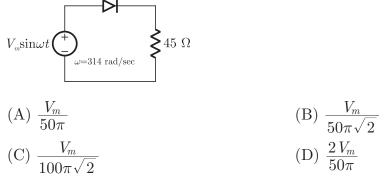
MCQ 8.97

A memory system has a total of 8 memory chips each with 12 address lines and 4 data lines, The total size of the memory system is

(A) 16 kbytes (B) 32 kbytes (C) 48 kbytes (D) 64 kbytes


GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	

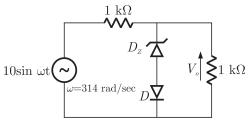
PAGE 456	ANALOG & DIGITAL EL	ECTRONICS CHA	P 8
MCQ 8.98	The following program is written for bytes located at memory addresses 1FI LXI H, 1FFE MOV B, M INR L MOV A, M ADD B INR L MOV M, A	-	two
	XOR A On completion of the execution of th	e program, the result of addition	n is
	found	e program, the result of addition	
	(A) in the register A	(B) at the memory address 100	00
	(C) at the memory address $1F00$	(D) at the memory address 200	00


YEAR 2002

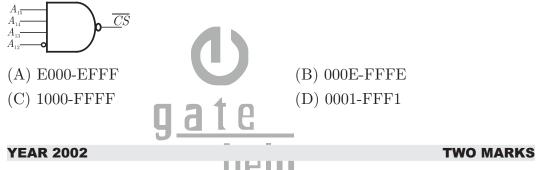
ONE MARK

MCQ 8.99The frequency of the clock signal applied to the rising edge triggered D-flip-
flop shown in Figure is 10 kHz. The frequency of the signal available at Q is.

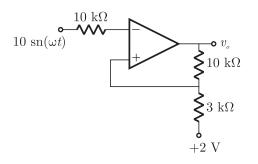
MCQ 8.100 The forward resistance of the diode shown in Figure is 5Ω and the remaining parameters are same at those of an ideal diode. The dc component of the source current is



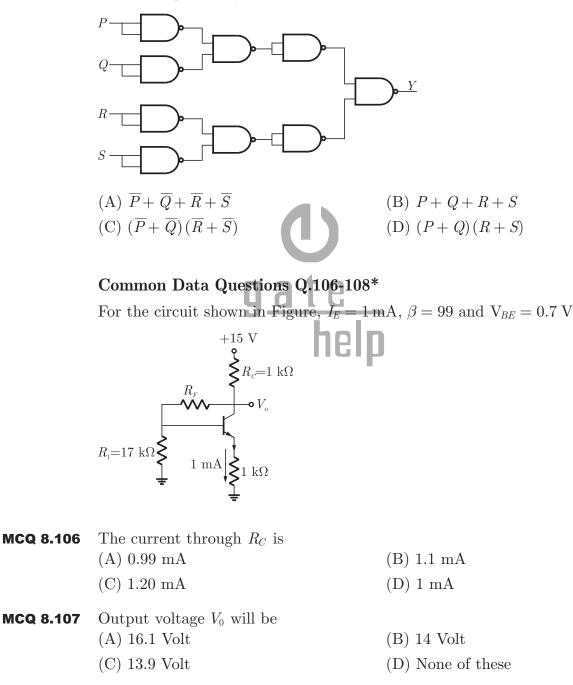
MCQ 8.101 The cut-in voltage of both zener diode D_Z and diode D shown in Figure is 0.7 V, while break-down voltage of D_Z is 3.3 V and reverse break-down voltage of D is 50 V. The other parameters can be assumed to be the same


GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		

CHAP 8


as those of an ideal diode. The values of the peak output voltage (V_o) are

- (A) 3.3 V in the positive half cycle and 1.4 V in the negative half cycle.
- (B) 4 V in the positive half cycle and 5 V in the negative half cycle.
- (C) 3.3 V in both positive and negative half cycles.
- (D) 4 V in both positive and negative half cycle
- The logic circuit used to generate the active low chip select (\overline{CS}) by an 8085 MCQ 8.102 microprocessor to address a peripheral is shown in Figure. The peripheral will respond to addresses in the range.



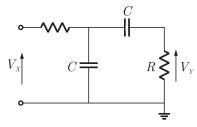
- A first order, low pass filter is given with $R = 50 \Omega$ and $C = 5 \mu$ F. What is MCQ 8.103 the frequency at which the gain of the voltage transfer function of the filter is 0.25 ? (A) 4.92 kHz (B) 0.49 kHz
 - (C) 2.46 kHz (D) 24.6 kHz
- The output voltage (v_a) of the Schmitt trigger shown in Figure swings **MCQ 8.104** between +15 V and -15 V. Assume that the operational amplifier is ideal. The output will change from +15 V to -15 V when the instantaneous value of the input sine wave is

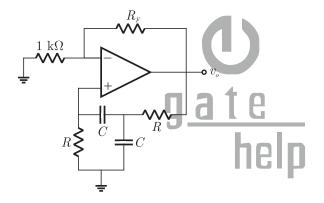
GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	

- (A) 5 V in the positive slope only (A)
- (B) 5 V in the negative slope only (B)
- (C) 5 V in the positive and negative slopes
- (D) 3 V in the positive and negative slopes.
- **MCQ 8.105** For the circuit shown in Figure, the boolean expression for the output Y in terms of inputs P, Q, R and S is

MCQ 8.108 Value of resistance R_F is

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	


ANALOG	& DIGITAL ELECTRONICS	3


(A) 110.9 k Ω	(B) 124.5 k Ω
(C) 130.90 k Ω	(D) None of these

Common data question Q.95-97*.

The following network is used as a feedback circuit in an oscillator shown in figure to generate sinusoidal oscillations. Assuming that the operation amplifier is ideal.

given that $R = 10 \text{ k}\Omega$ and C = 100 pF

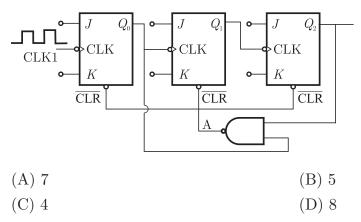
MCQ 8.109 The transfer function $\frac{V_y}{V_x}$ of the first network is

(A) $\frac{j\omega CR}{(1-\omega^2 R^2 C^2) + j3\omega CR}$	(B) $\frac{j\omega CR}{(1-\omega^2 R^2 C^2) + j2\omega CR}$
(C) $\frac{j\omega CR}{1+j3\omega CR}$	(D) $\frac{j\omega CR}{1+j2\omega CR}$
The frequency of oscillation will be	
(A) $\frac{1}{RC}$	(B) $\frac{1}{2RC}$
(C) $\frac{1}{4RC}$	(D) None of these
Value of R_F is	
(A) 1 k Ω	(B) 4 k Ω

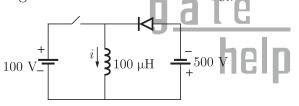
GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		

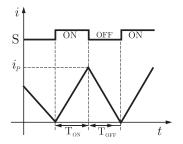
CHAP 8

MCQ 8.110


MCQ 8.111

ANALOG & DIGITAL ELECTRONICS


CHAP 8


MCQ 8.112 *The ripple counter shown in figure is made up of negative edge triggered J-K flip-flops. The signal levels at J and K inputs of all the flip flops are maintained at logic 1. Assume all the outputs are cleared just prior to applying the clock signal.

module no. of the counter is:

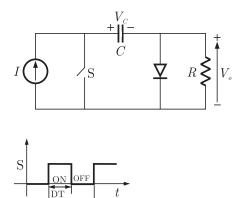
MCQ 8.113 *In Figure , the ideal switch S is switched on and off with a switching frequency f = 10 kHz. The switching time period is $T = t_{ON} + t_{OFF} \mu s$. The circuit is operated in steady state at the boundary of continuous and discontinuous conduction, so that the inductor current i is as shown in Figure. Values of the on-time t_{ON} of the switch and peak current i_p . are

(A) 63.33 μsec, 63.33 A
(C) 66.66 μsec, 66.66 mA

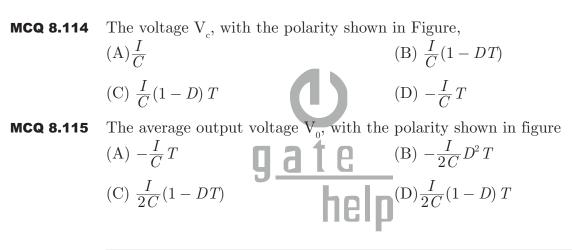
- (B) $63.33 \ \mu sec$, $63.33 \ \mu A$
- 66.66 mA
- (D) none of these

Common Data Questions Q.114-115*

In the circuit shown in Figure, the source I is a dc current source. The switch S is operated with a time period T and a duty ratio D. You may assume


GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	

PAGE 460

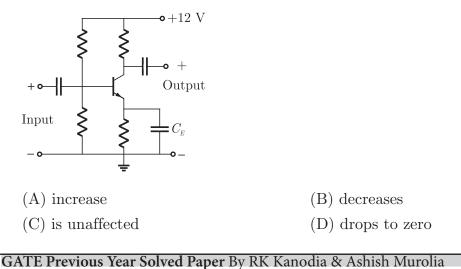

ANALOG & DIGITAL ELECTRONICS

PAGE 461

that the capacitance C has a finite value which is large enough so that the voltage. V_C has negligible ripple, calculate the following under steady state conditions, in terms of D, I and R

CHAP 8

YEAR 2001


Published by: NODIA and COMPANY

Visit us at: www.nodia.co.in

ONE MARK

ISBN: 9788192276243

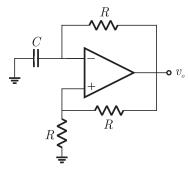
MCQ 8.116 In the single-stage transistor amplifier circuit shown in Figure, the capacitor C_E is removed. Then, the ac small-signal mid-band voltage gain of the amplifier

PAGE 462

ANALOG & DIGITAL ELECTRONICS

CHAP 8

- **MCQ 8.117** Among the following four, the slowest ADC (analog-to-digital converter) is (A) parallel-comparator (i.e. flash) type
 - (B) successive approximation type
 - (C) integrating type
 - (D) counting type
- **MCQ 8.118** The output of a logic gate is "1" when all its inputs are at logic "0". The gate is either
 - (A) a NAND or an EX-OR gate
 - (B) a NOR or an EX-OR gate
 - (C) an AND or an EX-NOR gate
 - (D) a NOR or an EX-NOR gate
- **MCQ 8.119** The output f of the 4-to-1 MUX shown in Figure is


MCQ 8.120 An op-amp has an open-loop gain of 10⁵ and an open-loop upper cut-off frequency of 10 Hz. If this op-amp is connected as an amplifier with a closed-loop gain of 100, then the new upper cut-off frequency is

(A) 10 Hz
(B) 100 Hz
(C) 10 kHz

YEAR 2001

TWO MARKS

MCQ 8.121 For the oscillator circuit shown in Figure, the expression for the time period of oscillation can be given by (where $\tau = RC$)

CHAP 8		ANALOG & DIGITAL ELECTRONICS	PAGE 463
	(A) $\tau \ln 3$	(B) $2\tau \ln 3$	
	(C) $\tau \ln 2$	(D) $2\tau \ln 2$	

MCQ 8.122 An Intel 8085 processor is executing the program given below.

	MVI A, 10 H
	MVI B, 10 H
BACK:	NOP
	ADD B
	RLC
	INC BACK
	HLT
umber of t	imes that the operation

The number of times that the operation NOP will be executed is equal to (A) 1 (B) 2 (C) 3 (D) 4

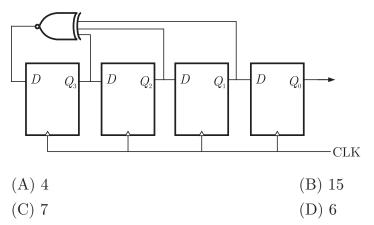
MCQ 8.123 A sample-and-hold (S/H) circuit, having a holding capacitor of 0.1 nF, is used at the input of an ADC (analog-to-digital converter). The conversion time of the ADC is $1 \mu \sec$, and during this time, the capacitor should not loose more than 0.5% of the charge put across it during the sampling time. The maximum value of the input signal to the S/H circuit is 5 V. The leakage current of the S/H circuit should be less than (A) 2.5 mA (C) 25.0 μ A

MCQ 8.124 An op-amp, having a slew rate of 62.8 V/μsec, is connected in a voltage follower configuration. If the maximum amplitude of the input sinusoidal is 10 V, then the minimum frequency at which the slew rate limited distortion would set in at the output is

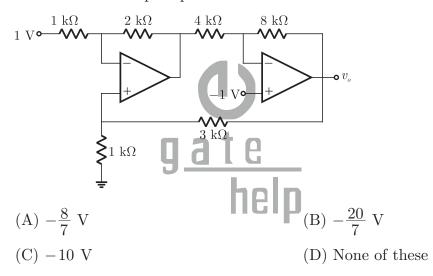
(A) 1.0 MHz
(B) 6.28 MHz

(C) 10.0 MHz	(D) 62.8 MHz

MCQ 8.125 An n-channel JFET, having a pinch off voltage (V_p) of -5 V, shows a transconductance (g_m) of 1 mA/V when the applied gate -to-source voltage (V_{GS}) is -3 V. Its maximum transconductance (in mA/V) is (A) 1.5 (B) 2.0 (C) 2.5 (D) 3.0

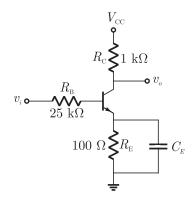

MCQ 8.126 *The circuit shown in the figure is a MOD-N ring counter. Value of N is

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	


ANALOG & DIGITAL ELECTRONICS

CHAP 8

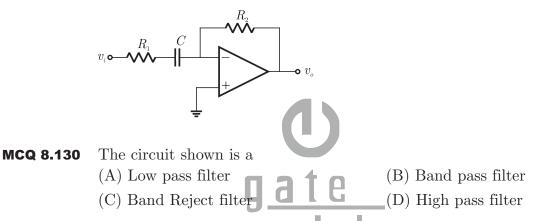
(assume initial state of the counter is 1110 i.e. $Q_3 Q_2 Q_1 Q_0 = 1110$).



MCQ 8.127 *For the op-amp circuit shown in Figure, determine the output voltage v_o . Assume that the op-amps are ideal.

Common Data Questions Q.128-129*.

The transistor in the amplifier circuit shown in Figure is biased at $I_c = 1 \text{ mA}$ Use $V_T = kT/q = 26 \text{ mV}, \beta_0 = 200, r_b = 0, \text{ and } r_0 \rightarrow \infty$


CHAP 8	ANALOG & DIGITAL ELE	CTRONICS	PAGE 465
MCQ 8.128	Small-signal mid-band voltage gain v_o/a	v_i is	
	(A) - 8	(B) 38.46	
	(C) - 6.62	(D) -1	
MCQ 8.129	What is the required value of C_E for	the circuit to have a low	ver cut-off

MCQ 8.129 What is the required value of C_E for the circuit to have a lower cut-off frequency of 10 Hz (A) 0.15 mF (B) 1.59 mF

$\langle \rangle$		
(C)	$5 \ \mu { m F}$	(D) 10 $\mu {\rm F}$

Common Data Questions Q.130-131*

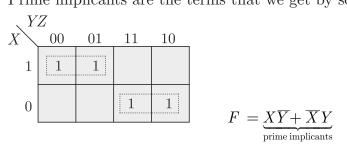
For the circuit shown in figure

MCQ 8.131 If the above filter has a 3 dB frequency of 1 kHz, a high frequency input resistance of 100 k Ω and a high frequency gain of magnitude 10. Then values of R_1 , R_2 and C respectively are :-

- (A) 100 k $\Omega,$ 1000 k $\Omega,$ 15.9 nF
- (B) 10 k\Omega, 100 k\Omega, 0.11 μF
- (C) 100 k $\Omega,$ 1000 k $\Omega,$ 15.9 nF
- (D) none of these

SOL 8.3

о-В


ANALOG & DIGITAL ELECTRONICS

CHAP 8

SOLUTION

SOL 8.1 Option (A) is correct.

Prime implicants are the terms that we get by solving K-map

SOL 8.2Option (D) is correct.Let v > 0.7 V and diode is forward biased. Applying Kirchoff's voltage law

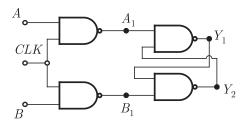
$$10 - i \times 1k - v = 0$$

$$10 - \left[\frac{v - 0.7}{500}\right](1000) - v = 0$$

$$10 - (v - 0.7) \times 2 - v = 0$$

$$v = \frac{11.4}{3} = 3.8 \text{ V} > 0.7 \quad \text{(Assumption is true)}$$
So,
$$i = \frac{v - 0.7}{500} = \frac{3.8 - 0.7}{500} = 6.2 \text{ mA}$$
Option (B) is correct.

Y = 1, when A > B


 $A = a_1 a_0, \ B = b_1 b_0$

			- •,	
a_1	a_0	b_1	b_0	Y
0	1	0	0	1
1	0	0	0	1
1	0	0	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1

Total combination = 6

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		

SOL 8.4 Option (A) is correct. The given circuit is

Condition for the race-around

It occurs when the output of the circuit (Y_1, Y_2) oscillates between '0' and '1' checking it from the options.

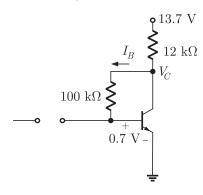
1. Option (A): When CLK = 0

Output of the NAND gate will be $A_1 = B_1 = \overline{0} = 1$. Due to these input to the next NAND gate, $Y_2 = \overline{Y_1 \cdot 1} = \overline{Y_1}$ and $Y_1 = \overline{Y_2 \cdot 1} = \overline{Y_2}$.

If $Y_1 = 0$, $Y_2 = \overline{Y_1} = 1$ and it will remain the same and doesn't oscillate. If $Y_2 = 0$, $Y_1 = \overline{Y_2} = 1$ and it will also remain the same for the clock period. So, it won't oscillate for CLK = 0.

So, here race around doesn't occur for the condition CLK = 0.

2. Option (C): When CLK = 1, A = B = 1


 $A_1 = B_1 = 0$ and so $Y_1 = Y_2 = 1$ And it will remain same for the clock period. So race around doesn't occur for the condition.

3. Option (D): When CLK = 1, A = B = 0So, $A_1 = B_1 = 1$

And again as described for Option (B) race around doesn't occur for the condition.

So, Option (A) will be correct.

SOL 8.5Option (D) is correct.DC Analysis :

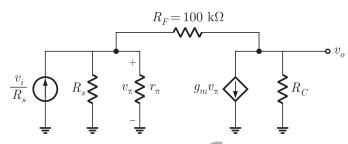
Using KVL in input loop,

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	

$$V_{C} - 100I_{B} - 0.7 = 0$$

$$V_{C} = 100I_{B} + 0.7 \qquad \dots(i)$$

$$I_{C} \simeq I_{E} = \frac{13.7 - V_{C}}{12k} = (\beta + 1)I_{B}$$


$$\frac{13.7 - V_{C}}{12 \times 10^{3}} = 100I_{B} \qquad \dots(ii)$$

Solving equation (i) and (ii),

 $I_B = 0.01 \,\mathrm{mA}$

Small Signal Analysis :

Transforming given input voltage source into equivalent current source.

This is a shunt-shunt feedback amplifier. Given parameters,

$$r_{\pi} = \frac{V_T}{I_B} = \frac{25 \text{ mV}}{0.01 \text{ mA}} = 2.5 \text{ k}\Omega$$
$$g_m = \frac{\beta}{r_{\pi}} = \frac{100}{2.5 \times 1000} = 0.04 \text{ s}$$

Writing KCL at output node

$$rac{v_0}{R_C} + g_m v_\pi + rac{v_0 - v_\pi}{R_F} = 0$$

$$v_0 \left[\frac{1}{R_C} + \frac{1}{R_F} \right] + v_\pi \left[g_m - \frac{1}{R_F} \right] = 0$$

Substituting $R_C = 12 \text{ k}\Omega$, $R_F = 100 \text{ k}\Omega$, $g_m = 0.04 \text{ s}$

$$v_0(9.33 imes 10^{-5}) + v_\pi(0.04) = 0$$

$$v_0 = -428.72 V_{\pi}$$
(i)

Writing KCL at input node

$$\frac{v_i}{R_s} = \frac{v_\pi}{R_s} + \frac{v_\pi}{r_\pi} + \frac{v_\pi - v_o}{R_F} = v_\pi \Big[\frac{1}{R_s} + \frac{1}{r_\pi} + \frac{1}{R_F} \Big] - \frac{v_0}{R_F}$$
$$= v_\pi (5.1 \times 10^{-4}) - \frac{v_0}{R_F}$$

Substituting V_{π} from equation (i)

$$\frac{v_i}{R_s} = \frac{-5.1 \times 10^{-4}}{428.72} v_0 - \frac{v_0}{R_F}$$

 $\frac{v_i}{10 \times 10^3} = -1.16 \times 10^{-6} v_0 - 1 \times 10^{-5} v_0 R_s = 10 \text{ k}\Omega \text{ (source resistance)}$

GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

$$\frac{v_i}{10 \times 10^3} = -1.116 \times 10^{-5}$$
$$|A_v| = \left|\frac{v_0}{v_i}\right| = \frac{1}{10 \times 10^3 \times 1.116 \times 10^{-5}} \simeq 8.96$$

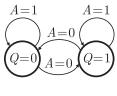
SOL 8.6 Option (D) is correct.

Let Q_{n+1} is next state and Q_n is the present state. From the given below figure.

$$D = Y = \overline{A}X_0 + AX_1$$

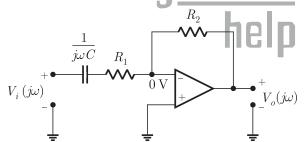
$$Q_{n+1} = D = \overline{A}X_0 + AX_1$$

$$Q_{n+1} = \overline{A} \ \overline{Q_n} + AQ_n$$


$$A = 0,$$

$$A = 1,$$

$$Q_{n+1} = \overline{Q_n}$$


$$Q_{n+1} = Q_n$$
(toggle of previous state)
(toggle of previous state)

So state diagram is

If If

Option (B) is correct. **SOL 8.7** First we obtain the transfer function.

$$\frac{0 - V_i(j\omega)}{\frac{1}{j\omega C} + R_1} + \frac{0 - V_o(j\omega)}{R_2} = 0$$
$$\frac{V_o(j\omega)}{R_2} = \frac{-V_i(j\omega)}{1}$$

$$\frac{1}{R_2} = \frac{1}{\frac{1}{j\omega C} + R_1}$$

$$V_o(j\omega) = -rac{V_i(j\omega)R_2}{R_1 - jrac{1}{\omega C}}$$

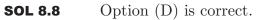
 $\frac{1}{\omega C} \to \infty$, so $V_o = 0$ At $\omega \to 0$ (Low frequencies), $\frac{1}{\omega C} \rightarrow 0$, so $V_o(j\omega) = -\frac{R_2}{R_1} V_i(j\omega)$ At $\omega \to \infty$ (higher frequencies),

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	

ANALOG & DIGITAL ELECTRONICS

The filter passes high frequencies so it is a high pass filter.

$$H(j\omega) = \frac{V_o}{V_i} = \frac{-R_2}{R_1 - j\frac{1}{\omega C}}$$
$$|H(\infty)| = \left|\frac{-R_2}{R_1}\right| = \frac{R_2}{R_1}$$

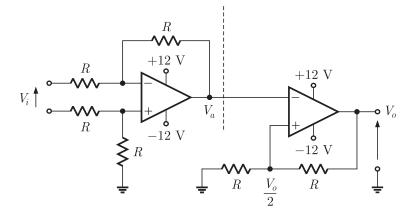

At 3 dB frequency, gain will be $\sqrt{2}\,$ times of maximum gain $[H(\infty)]$


$$|H(j\omega_0)| = \frac{1}{\sqrt{2}} |H(\infty)|$$

$$\frac{R_2}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{R_2}{R}\right)$$

So,

$$\sqrt{R_1^2 + \frac{1}{\omega_0^2 C^2}} \quad \sqrt{2(R_1)}$$
$$2R_1^2 = R_1^2 + \frac{1}{\omega_0^2 C^2} \Rightarrow R_1^2 = \frac{1}{\omega^2 C^2}$$
$$\omega_0 = \frac{1}{R_1 C}$$



So, it will act as a Band pass filter.

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		

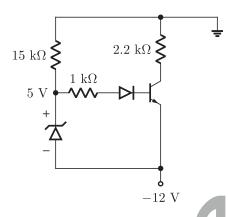
SOL 8.9 Option (D) is correct.

The first half of the circuit is a differential amplifier (negative feedback) $V_a = - (V_i)$

Second op-amp has a positive feedback, so it acts as an schmitt trigger. Since

 $V_a = -V_i$ this is a non-inverting schmitt trigger.

Threshold value


SOL 8.11 Option (C) is correct. LXI D, DISP LP : CALL SUB LP + 3 When CALL SUB is executed LP+3 value is pushed(inserted) in the stack. POP H \Rightarrow HL = LP + 3 DAD D \Rightarrow HL = HL + DE

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia	
Published by: NODIA and COMPANY	ISBN: 9788192276243
Visit us at: www.nodia.co.in	

= LP + 3 + DE

PUSH H \Rightarrow The last two value of the stack will be HL value i.e, LP + DISP + 3

SOL 8.12 Option (D) is correct. Zener Diode is used as stabilizer. The circuit is assumed to be as

We can see that both BE and BC Junction are forwarded biased. So the BJT is operating in saturation.

Collector current $I_C = \frac{12 - 0.2}{2.2k} = 5.36 \text{ mA}$ *Note:*- In saturation mode $I_C \neq \beta I_B$

Option (C) is correct. **SOL 8.13**

The characteristics equation of the JK flip-flop is

 $Q_{n+1} = J\overline{Q}_n + \overline{K}Q_n$

 Q_{n+1} is the next state

From figure it is clear that

$$J = \overline{Q_B}; K = Q_B$$

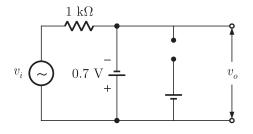
The output of JK flip flop

$$Q_{A(n+1)} = \overline{Q_B} \, \overline{Q_A} + \overline{Q_B} \, Q_A = \overline{Q_B} (\overline{Q_A} + Q_A) = \overline{Q_B}$$

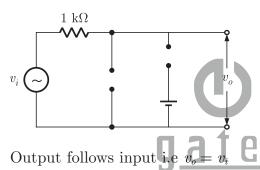
Output of T flip-flop 6

$$Q_{B(n+1)} = Q_A$$

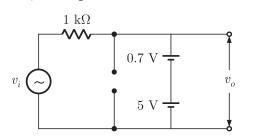
Clock pulse	Q_A	Q_B	$Q_{A(n+1)}$	$Q_{B(n+1)}$
Initially (t_n)	1	0	1	0
$t_n + 1$	1	0	1	0
$t_n + 2$	1	0	1	0
$t_n + 3$	1	0	1	0


ANALOG & DIGITAL ELECTRONICS

PAGE 473


SOL 8.14 Option (C) is correct.

We can obtain three operating regions depending on whether the Zener and PN diodes are forward biased or reversed biased.


1. $v_i \leq -0.7 \text{ V}$, zener diode becomes forward biased and diode D will be off so the equivalent circuit looks like

The output $v_o = -0.7 \text{ V}$ 2. When $-0.7 < v_i \le 5.7$, both zener and diode *D* will be off. The circuit is

Note that zener goes in reverse breakdown(i.e acts as a constant battery) only when difference between its p-n junction voltages exceeds 10 V. 3. When $v_i > 5.7$ V, the diode D will be forward biased and zener remains off, the equivalent circuit is

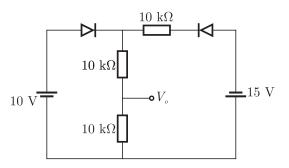
 $v_o = 5 + 0.7 = 5.7 \text{ V}$

SOL 8.15 Option (B) is correct. Since the op-amp is ideal

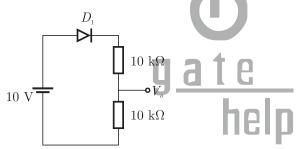
$$v_{+} = v_{-} = +2$$
 volt

By writing node equation

$$\frac{v_{-}-0}{R} + \frac{v_{-}-v_{o}}{2R} = 0$$


GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

ANALOG & DIGITAL ELECTRONICS


CHAP 8

$$\frac{2}{R} + \frac{(2 - v_o)}{2R} = 0$$
$$4 + 2 - v_o = 0$$
$$v_o = 6 \text{ volt}$$

SOL 8.16 Option (B) is correct. Given circuit is,

We can observe that diode D_2 is always off, whether D_1 , is on or off. So equivalent circuit is.

 D_1 is ON in this condition and

$$V_0 = \frac{10}{10 + 10} \times 10$$
$$= 5 \text{ volt}$$

SOL 8.17 Option (A) is correct.

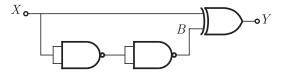
By writing KVL equation for input loop (Base emitter loop)

$$10 - (10 \,\mathrm{k}\Omega) \,I_B - V_{BE} - V_0 = 0 \qquad \dots (1)$$

Emitter current $I_E = \frac{V_0}{100}$

So,

$$egin{aligned} I_C &\simeq I_E = eta I_B \ rac{V_0}{100} &= 100 I_B \ I_B &= rac{V_0}{10 imes 10^3} \end{aligned}$$

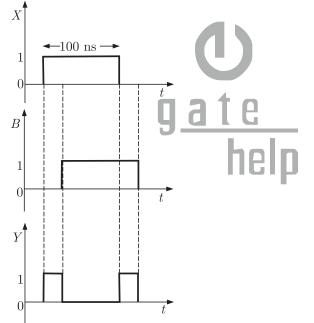

Put I_B into equation (1)

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY ISBN: 978819227624		
Visit us at: www.nodia.co.in		

$$10 - (10 \times 10^3) \frac{V_0}{10 \times 10^3} - 0.7 - V_0 = 0$$

9.3 - 2 V_0 = 0
 $V_0 = \frac{9.3}{2} = 4.65 \text{ A}$

SOL 8.18 Option (A) is correct. The circuit is


 \Rightarrow

Output Y is written as

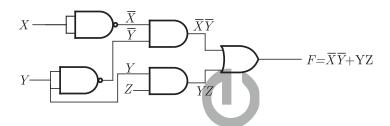
 $Y = X \oplus B$

Since each gate has a propagation delay of 10 ns.

SOL 8.19 Option (D) is correct. CALL, Address performs two operations (1) PUSH PC \Rightarrow Save the contents of PC (Program Counter) into stack. SP = SP - 2 (decrement) ((SP)) \leftarrow (PC) (2) Addr stored in PC. (PC) \leftarrow Addr

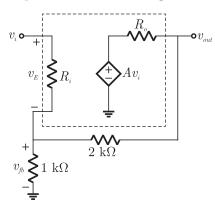
GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		

ANALOG & DIGITAL ELECTRONICS


CHAP 8

SOL 8.20Option (B) is correct.Function F can be minimized by grouping of all 1's in K-map as following.

X X X X	2 00	01	11	10
0	1	1	1	0
1	0	0	1	0


$$F = \overline{X} \ \overline{Y} + \ YZ$$

SOL 8.21 Option (D) is correct. Since $F = \overline{X} \ \overline{Y} + YZ$ In option (D)

- **SOL 8.22** Option (A) is correct. **A Contract Co**
- SOL 8.23 Option (B) is correct. The increasing order of speed is as following Magnetic tape> CD-ROM> Dynamic RAM>Cache Memory>Processor register

SOL 8.24 Option (B) is correct. Equivalent circuit of given amplifier

GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

PAGE 476

CHAP 8	ANALOG & DIGITAL ELECTRONICS PAGE 4	77
	Feedback samples output voltage and adds a negative feedback voltage (v to input.)
	So, it is a voltage-voltage feedback.	
SOL 8.25	Option () is correct. NOR and NAND gates considered as universal gates.	
SOL 8.26	Option (A) is correct. Let voltages at positive and negative terminals of op-amp are V_+ and respectively, then $V_+ = V = V_s$ (ideal op-amp)	V
	In the circuit we have, $\frac{V-0}{\left(\frac{1}{Cs}\right)} + \frac{V-V_0(s)}{R} = 0$	
	$(RCs) V + V - V_0(s) = 0$	
	$(1 + RCs) V_s = V_0(s)$ Similarly current I_s is, $I_s = \frac{V_s - V_0}{R}$	
	$I_{s} = \frac{RCs}{R} V_{s}$ $I_{s} = j\omega CV_{s}$ $I_{s} = \omega CV_{s} \angle + 90^{\circ}$ $ I_{s} = 2\pi f \times 10 \times 10^{-6} \times 10$	
	$ I_s = 2 \times \pi \times 50 \times 10^{-6} \times 10^{-6}$	
	$ I_s = 10\pi$ mA, leading by 90°	
SOL 8.27	Option (D) is correct. Input and output power of a transformer is same $P_{in} = P_{out}$	
	for emitter follower, voltage $gain(A_v) = 1$ current $gain(A_i) > 1$	
	Power $(P_{out}) = A_v A_i P_{in}$ Since emitter follower has a high current gain so $P_{out} > P_{in}$	
SOL 8.28	Option (D) is correct. For the given instruction set, XRA $A \Rightarrow$ XOR A with $A \Rightarrow A = 0$	
_	MVI B , F0 H \Rightarrow $B =$ F0 H	

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		

SUB
$$B \Rightarrow A = A - B$$

 $A = 000000000$
 $B = 11110000$
2's complement of $(-B) = 00010000$
 $A + (-B) = A - B = 00010000$
 $= 10 \,\text{H}$

SOL 8.29 Option (D) is correct.

This is a schmitt trigger circuit, output can takes two states only.

$$V_{OH} = + 6$$
 volt
 $V_{OL} = - 3$ volt

Threshold voltages at non-inverting terminals of op-amp is given as

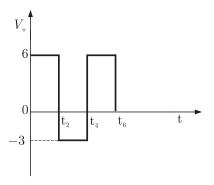
$$\frac{V_{TH} - 6}{2} + \frac{V_{TH} - 0}{1} = 0$$

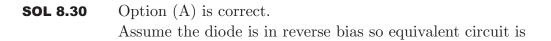
$$3 V_{TH} - 6 = 0$$

$$V_{TH} = 2 V \text{ (Upper threshold)}$$
Similarly
$$\frac{V_{TL} - (-3)}{2} + \frac{V_{TL}}{1} = 0$$

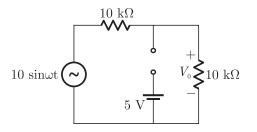
$$3 V_{TL} + 3 = 0$$

$$V_{TL} = -1 V \text{ (Lower threshold)}$$
For
$$V_{in} < 2 \text{ Volt}, V_0 = +6 \text{ Volt}$$

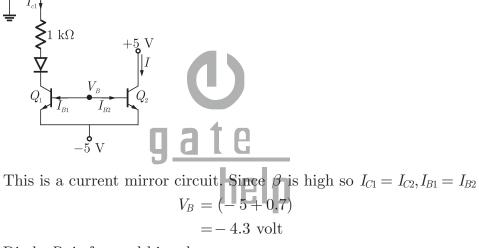

$$V_{in} > 2 \text{ Volt}, V_0 = -3 \text{ Volt}$$


For

$$V_{in} < -1$$
 Volt $V_0 = +6$ Volt


$$V_{in} > -1$$
 Volt $V_0 = -3$ Volt

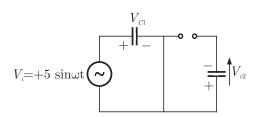
Output waveform



Output voltage $V_0 = \frac{10\sin\omega t}{10+10} \times 10 = 5\sin\omega t$

Due to resistor divider, voltage across diode $V_D < 0$ (always). So it in reverse bias for given input.

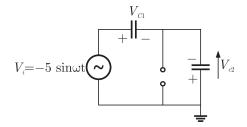
Output, $V_0 = 5 \sin \omega t$


SOL 8.31 Option (C) is correct.

Diode D_1 is forward biased.

So, current *I* is, $I = I_{C2} = I_{C1}$ $= \frac{0 - (-4.3)}{1} = 4.3 \text{ mA}$

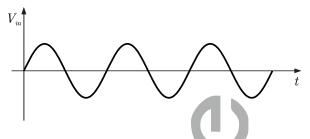
SOL 8.32 Option (D) is correct. In positive half cycle of input, diode D_1 is in forward bias and D_2 is off, the equivalent circuit is

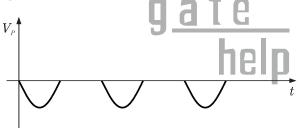


Capacitor C_1 will charge up to +5 volt. $V_{C_1} = +5$ volt

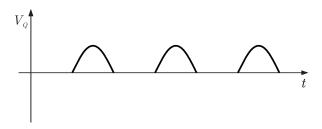
GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		

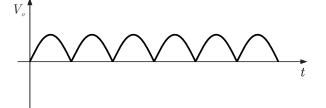
ANALOG & DIGITAL ELECTRONICS


In negative halt cycle diode D_1 is off and D_2 is on.


Now capacitor V_{C2} will charge upto -10 volt in opposite direction.

SOL 8.33 Option () is correct.


Let input V_{in} is a sine wave shown below


According to given transfer characteristics of rectifiers output of rectifier P is.

Similarly output of rectifier Q is

Output of a full wave rectifier is given as

To get output V_0

 $V_0 = K(-V_P + V_Q)$ K – gain of op-amp

So, P should connected at inverting terminal of op-amp and Q with non-inverting terminal.

- **SOL 8.34** Option () is correct.
- **SOL 8.35** Option (C) is correct. For low frequencies, $\omega \to 0$, so $\frac{1}{\omega C} \to \infty$ Equivalent circuit is, $v_i \bullet R_1 \bullet v_a \bullet v_$

Applying node equation at positive and negative input terminals of op-amp.

$$\frac{v_A - v_i}{R_1} + \frac{v_A - v_o}{R_2} = 0$$

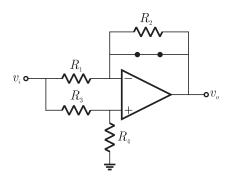
2 $v_A = v_i + v_o$, $\therefore R_1 = R_2 = R_A$

Similarly,

$$\frac{v_A - v_i}{R_3} + \frac{v_A - 0}{R_4} = 0$$

2 $v_A = v_{in},$ $\therefore R_3 = R_4 = R_B$

So, $v_o = 0$


It will stop low frequency signals. For high frequencies,

$$\omega \to \infty$$
, then $\frac{1}{\omega C} \to 0$

Equivalent circuit is,

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		

ANALOG & DIGITAL ELECTRONICS

Output, $v_o = v_i$ So it will pass high frequency signal. This is a high pass filter.

SOL 8.36 Option (D) is correct.

In Q.7.21 cutoff frequency of high pass filter is given by,

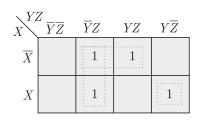
$$\omega_h = \frac{1}{2\pi R_A C}$$

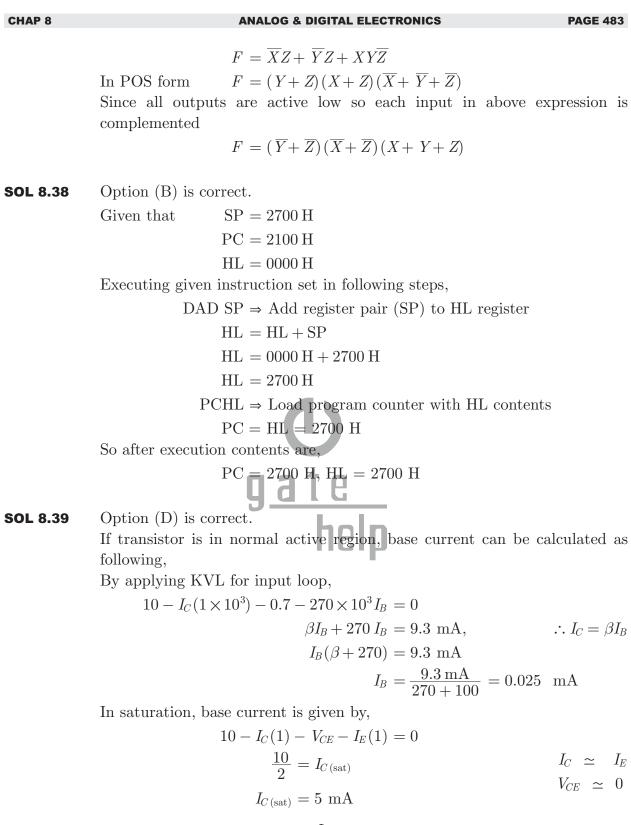

Here given circuit is a low pass filter with cutoff frequency,

$$\omega_L = \frac{1}{2\pi \frac{R_A}{2}C} = \frac{2}{2\pi R_A C}$$
$$\omega_L = 2\omega_h$$

When both the circuits are connected together, equivalent circuit is,

$$\stackrel{\text{I/P}}{\longrightarrow} \stackrel{\text{High pass}}{\text{filter } (\omega_h)} \stackrel{\text{Low pass}}{\longrightarrow} \stackrel{\text{O/P}}{\text{filter } (2\omega_h)} \stackrel{\text{O/P}}{\longleftarrow}$$


So this is Band pass filter, amplitude response is given by.

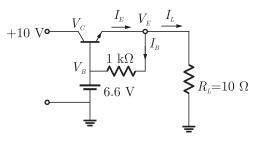


SOL 8.37 Option (B) is correct. In SOP form, F is written as

$$F = \Sigma m (1, 3, 5, 6)$$

= $\overline{X} \ \overline{Y}Z + \overline{X} \ YZ + X \overline{Y}Z + X \overline{Y}Z$

Solving from K- map



$$I_{B(\text{sat})} = \frac{I_{C(\text{sat})}}{\beta} = \frac{5}{100} = .050 \text{ mA}$$

 $I_B < I_{B(sat)}$, so transistor is in forward active region.

ANALOG & DIGITAL ELECTRONICS

SOL 8.40 Option (B) is correct. In the circuit

We can analyze that the transistor is operating in active region.

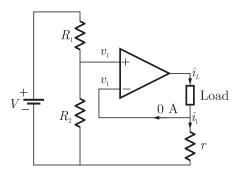
$$V_{BE(ON)} = 0.6$$
 volt
 $V_B - V_E = 0.6$
 $6.6 - V_E = 0.6$
 $V_E = 6.6 - 0.6 = 6$ volt

At emitter (by applying KCL),

$$I_E = I_B + I_L$$

 $I_E = \frac{6 - 6.6}{1 \,\mathrm{k}\Omega} + \frac{6}{10 \,\Omega} \simeq 0.6 \,\mathrm{amp}$

 $V_{CE} = V_C - V_E = 10 - 6 = 4$ volt Power dissipated in transistor is given by.


Ì

$$P_T = \frac{V_{CE} \times I_C}{2.4 \text{ W}} \stackrel{I_C}{=} \frac{1}{2.4 \text{ W}} \stackrel{I_C}{=}$$

 $\therefore I_C \simeq I_E = 0.6 \text{ amp}$

SOL 8.41 Option (D) is correct.

This is a voltage-to-current converter circuit. Output current depends on input voltage.

Since op-amp is ideal $v_+ = v_- = v_1$ Writing node equation.

$$\frac{v_1 - v}{R_1} + \frac{v_1 - 0}{R_2} = 0$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

ANALOG & DIGITAL ELECTRONICS

$$\left(\frac{R_1 + R_2}{R_1 R_2}\right) = \frac{V}{R_1}$$
$$v_1 = V\left(\frac{R_2}{R_1 + R_2}\right)$$

Since the op-amp is ideal therefore

 v_1

$$i_L = i_1 = rac{v_1}{r} = rac{V}{r} \Big(rac{R_2}{R_1 + R_2} \Big)$$

SOL 8.42Option (D) is correct.In the circuit output Y is given as

$$Y = [A \oplus B] \oplus [C \oplus D]$$

Output Y will be 1 if no. of 1's in the input is odd.

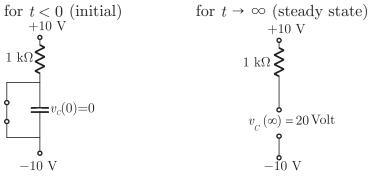
SOL 8.43 Option () is correct.

This is a class-B amplifier whose efficiency is given as

$$\eta = \frac{\pi}{4} \frac{V_P}{V_{CC}}$$

where $V_P \rightarrow$ peak value of input signal

 $V_{CC} \rightarrow$ supply voltage


here $V_P = 7$ volt, $V_{CC} = 10$ volt

so,

$$g_{\pi} = \frac{\pi}{4} \frac{27}{10} \times 100 = 54.95\% \simeq 55\%$$

SOL 8.44 Option (B) is correct.

In the circuit the capacitor starts charging from 0 V (as switch was initially closed) towards a steady state value of 20 V.

So at any time t, voltage across capacitor (i.e. at inverting terminal of opamp) is given by

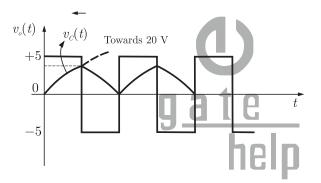
$$egin{aligned} v_c(t) &= v_c(\infty) + \left[v_c(0) - v_c(\infty)
ight] e^{rac{-t}{RC}} \ v_c(t) &= 20 \left(1 - e^{rac{-t}{RC}}
ight) \end{aligned}$$

Voltage at positive terminal of op-amp

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY ISBN: 9788192276243		
Visit us at: www.nodia.co.in		

PAGE 485

ANALOG & DIGITAL ELECTRONICS


$$\frac{v_{+} - v_{out}}{10} + \frac{v_{+} - 0}{100} = 0$$
$$v_{+} = \frac{10}{11}v_{out}$$

Due to zener diodes, $-5 \le v_{out} \le +5$ So, $v_+ = \frac{10}{11}(5)$ V

Transistor form -5 V to +5 V occurs when capacitor charges up to v_+ .

So
$$20(1 - e^{-t/RC}) = \frac{10 \times 5}{11}$$
$$1 - e^{-t/RC} = \frac{5}{22}$$
$$\frac{17}{22} = e^{-t/RC}$$
$$t = RC \ln\left(\frac{22}{17}\right) = 1 \times 10^3 \times .01 \times 10^{-6} \times 0.257 = 2.57 \ \mu \text{sec}$$

Voltage waveforms in the circuit is shown below

SOL 8.45Option (B) is correct.First convert the given number from hexadecimal to its binary equivalent,
then binary to octal.Hexadecimal no.AB. CDBinary equivalent $\frac{1010}{A}$ $\frac{1011}{B}$ $\frac{1101}{D}$

To convert in octal group three binary digits together as shown $\underbrace{010}_{2} \underbrace{101}_{5} \underbrace{011}_{3} \cdot \underbrace{110}_{6} \underbrace{011}_{3} \underbrace{010}_{2}$

So, $(AB.CD)_{\rm H} = (253.632)_8$

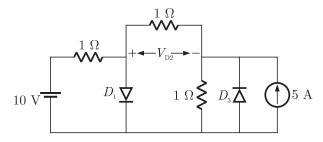
SOL 8.46 Option (B) is correct.

In a 555 astable multi vibrator circuit, charging of capacitor occurs through resistor $(R_A + R_B)$ and discharging through resistor R_B only. Time for charging and discharging is given as.

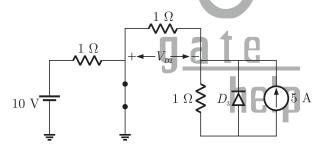
GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

ANALOG & DIGITAL ELECTRONICS

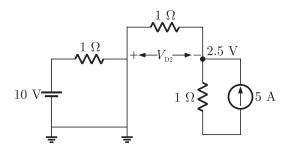
PAGE 487


$$T_C = 0.693 (R_A + R_B) C = 0.693 R_B C$$

But in the given circuit the diode will go in the forward bias during charging, so the capacitor will charge through resistor R_A only and discharge through R_B only.

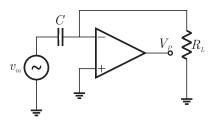

$$\begin{array}{ll} \ddots & & R_A = R_B \\ \text{So} & & T_C = T_D \end{array} \end{array}$$

SOL 8.47 Option (A) is correct.


First we can check for diode D_2 . Let diode D_2 is OFF then the circuit is

In the above circuit diode D_1 must be ON, as it is connected with 10 V battery now the circuit is

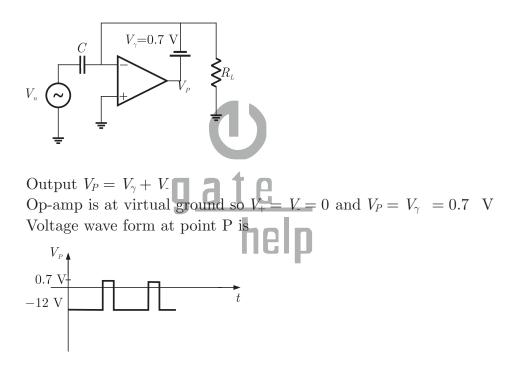
Because we assumed diode D_2 OFF so voltage across it $V_{D2} \leq 0$ and it is possible only when D_3 is off.

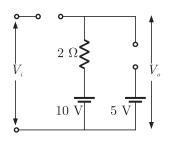

So, all assumptions are true.

SOL 8.48 Option (D) is correct.

In the positive half cycle of input, Diode D_1 will be reverse biased and equivalent circuit is.

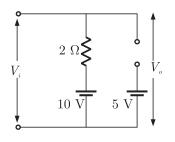
GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY ISBN: 978819227624		
Visit us at: www.nodia.co.in		


CHAP 8

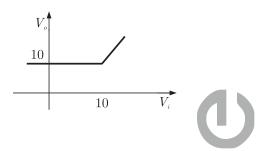

Since there is no feed back to the op-amp and op-amp has a high open loop gain so it goes in saturation. Input is applied at inverting terminal so.

$$V_P = -V_{CC} = -12 \text{ V}$$

In negative half cycle of input, diode D_1 is in forward bias and equivalent circuit is shown below.

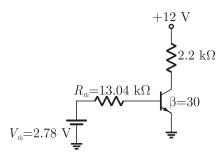


SOL 8.49 Option (A) is correct. In the circuit when $V_i < 10$ V, both D_1 and D_2 are off. So equivalent circuit is,



When $V_i > 10$ V (D_1 is in forward bias and D_2 is off So the equivalent circuit is,

Output, $V_o = V_i$ Transfer characteristic of the circuit is



SOL 8.50 Option (B) is correct. Assume that BJT is in active region, thevenin equivalent of input circuit is obtained as

$$\begin{array}{c}
 +12 \text{ V} \\
 +12 \text{ V} \\
 2.2 \text{ k}\Omega
 \\
 V_{i} \underbrace{15 \text{ k}\Omega}_{i} \underbrace{R_{th}}_{Q} \\
 100 \text{ k}\Omega \underbrace{\downarrow}_{i} \\
 -12 \text{ V}
 \\
 \underbrace{V_{th} - V_{i}}_{15} + \frac{V_{th} - (-12)}{100} = 0
 \\
 20 V_{th} - 20 V_{i} + 3 V_{th} + 36 = 0
 \\
 23 V_{th} = 20 \times 5 - 36, V_{i} = 5 \text{ V} \\
 V_{th} = 2.78 \text{ V}
 \\
 Thevenin resistance \qquad R_{th} = 15 \text{ K}\Omega || 100 \text{ K}\Omega
 \\
 = 13.04 \text{ K}\Omega
 \end{aligned}$$

So the circuit is

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		

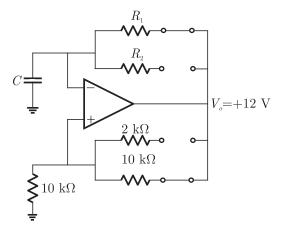
Writing KVL for input loop

$$2.78 - R_{th}I_B - 0.7 = 0$$

 $I_B = 0.157 \text{ mA}$

Current in saturation is given as,

$$I_{B(\text{sat})} = \frac{I_{C(\text{sat})}}{\beta}$$
$$I_{C(\text{sat})} = \frac{12.2}{2.2} = 5.4 \text{ mA}$$
$$I_{B(\text{sat})} = \frac{5.45 \text{ mA}}{\beta} = 0.181 \text{ mA}$$

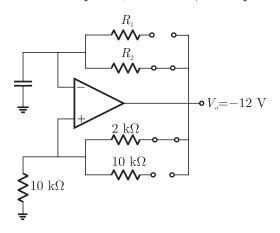

So,

$$I_{B(\text{sat})} = \frac{5.45 \text{ mA}}{30} = 0.181 \text{ n}$$

Since $I_{B(sat)} > I_B$, therefore assumption is true.

SOL 8.51 Option (C) is correct. Here output of the multi vibrator is $V_0 = \pm 12$ volt

Threshold voltage at positive terminal of op-amp can be obtained as following When output $V_0 = +12$ V, equivalent circuit is,

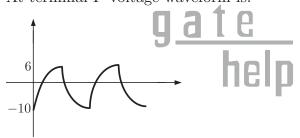


writing node equation at positive terminal of op-amp

$$\frac{V_{th} - 12}{10} + \frac{V_{th} - 0}{10} = 0$$

 $V_{th} = 6$ volt (Positive threshold)

So, the capacitor will charge upto 6 volt. When output $V_0 = -12$ V, the equivalent circuit is.



node equation

$$\frac{V_{th} + 12}{2} + \frac{V_{th} - 0}{10} = 0$$

5 V_{th} + 60 + V_{th} = 0

 $V_{th} = -10$ volt (negative threshold)

So the capacitor will discharge up to -10 volt. At terminal P voltage waveform is.

SOL 8.52 Option () is correct.

SOL 8.53 Option () is correct.

SOL 8.54Option (A) is correct.Function F can be obtain as,

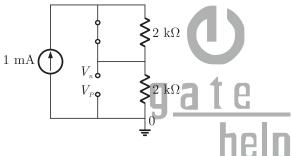
$$F = I_0 \overline{S_1} \overline{S_0} + I_1 \overline{S_1} S_0 + I_2 S_1 \overline{S_0} + I_3 S_1 S_0$$

= $A\overline{B} \ \overline{C} + \overline{A} \ \overline{B} \ C + 1 \cdot B\overline{C} + 0 \cdot BC$
= $A\overline{B} \ \overline{C} + \overline{A} \ \overline{B}C + B\overline{C} = A\overline{B} \ \overline{C} + \overline{A} \ \overline{B}C + B\overline{C}(A + \overline{A})$
= $A\overline{B} \ \overline{C} + \overline{A} \ \overline{B}C + AB\overline{C} + \overline{A} \ \overline{B}C$
= $\Sigma (1, 2, 4, 6)$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY ISBN: 9788192276243		
Visit us at: www.nodia.co.in		

PAGE 492	ANALOG & DIGITAL ELECTRONICS	CHAP 8

SOL 8.55 Option (A) is correct.


MVI H and MVI L stores the value 255 in H and L registers. DCR L decrements L by 1 and JNZ checks whether the value of L is zero or not. So DCR L executed 255 times till value of L becomes '0'.

Then DCR H will be executed and it goes to 'Loop' again, since L is of 8 bit so no more decrement possible and it terminates.

- **SOL 8.56** Option (A) is correct.
- $XCHG \Rightarrow$ Exchange the contain of DE register pair with HL pair So now addresses of memory locations are stored in HL pair.
- INR $M \Rightarrow$ Increment the contents of memory whose address is stored in HL pair.
- **SOL 8.57** Option (A) is correct.

From the circuit we can observe that Diode D_1 must be in forward bias (since current is flowing through diode).

Let assume that D_2 is in reverse bias, so equivalent circuit is.

Voltage V_n is given by

$$V_n = 1 \times 2 = 2$$
 Volt

$$V_p = 0$$

 $V_n > V_p$ (so diode is in reverse bias, assumption is true) Current through D_2 is $I_{D2} = 0$

- **SOL 8.58** Option (C) is correct. SHLD transfers contain of HL pair to memory location. SHLD 2050 \Rightarrow L \rightarrow M[2050H] H \rightarrow M[2051H]
- **SOL 8.59** Option (D) is correct. This is a N-channel MOSFET with $V_{GS} = 2$ V $V_{TH} = +1$ V

$$V_{DS(\mathrm{sat})} = V_{GS} - V_{TH}$$

 $V_{DS(\mathrm{sat})} = 2 - 1 = 1$ V

CHAP 8

ANALOG & DIGITAL ELECTRONICS

PAGE 493

Due to 10 V source $V_{DS} > V_{DS(sat)}$ so the NMOS goes in saturation, channel conductivity is high and a high current flows through drain to source and it acts as a short circuit.

So, $V_{ab} = 0$

SOL 8.60 Option (C) is correct.

Let the present state is Q(t), so input to D-flip flop is given by,

$$D = Q(t) \oplus X$$

Next state can be obtained as,

$$Q(t+1) = D$$

= $Q(t) \oplus X$
= $Q(t)\overline{X} + \overline{Q}(t)X$
= $\overline{Q}(t)$, if $X = 1$
 $Q(t+1) = Q(t)$, if $X = 0$

and

So the circuit behaves as a T flip flop.

SOL 8.61 Option (B) is correct. Since the transistor is operating in active region.

$$I_E \stackrel{\sim}{=} \frac{\beta I_B}{\beta} = \frac{1}{1} \frac{mA}{mA} = 10 \ \mu A$$

SOL 8.62Option (C) is correct.Gain of the inverting amplifier is given by,

$$A_v = -\frac{R_F}{R_1} = -\frac{1 \times 10^6}{R_1}, \quad R_F = 1 \quad M\Omega$$
$$R_1 = -\frac{1 \times 10^6}{A_v}$$

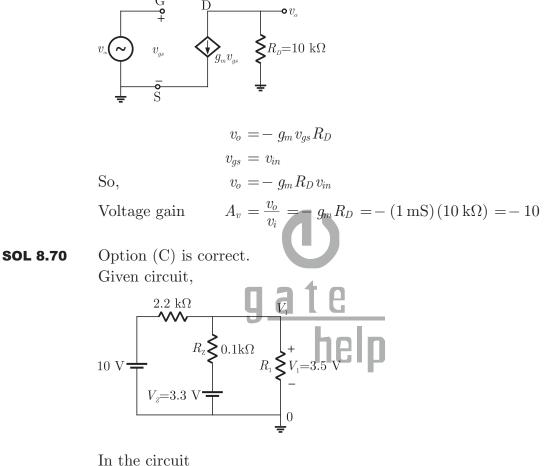
 $A_v = -10$ to -25 so value of R_1

$$R_{1} = \frac{10^{6}}{10} = 100 \text{ k}\Omega \qquad \text{for } A_{v} = -10$$
$$R_{1}' = \frac{10^{6}}{25} = 40 \text{ k}\Omega \qquad \text{for } A_{v} = -25$$

 R_1 should be as large as possible so $R_1 = 100 \text{ k}\Omega$

SOL 8.63 Option (B) is correct.

Direct coupled amplifiers or DC-coupled amplifiers provides gain at dc or very low frequency also.


GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY ISBN: 9788192276243		
Visit us at: www.nodia.co.in		

PAGE 494	ANALOG & DIGITAL ELECTRONICS CHAP 8
SOL 8.64	Option (C) is correct. Since there is no feedback in the circuit and ideally op-amp has a very high value of open loop gain, so it goes into saturation (ouput is either $+V$ or $-V$) for small values of input. The input is applied to negative terminal of op-amp, so in positive half cycle it saturates to $-V$ and in negative half cycle it goes to $+V$.
SOL 8.65 CHECK	Option (B) is correct. From the given input output waveforms truth table for the circuit is drawn as $\begin{array}{cccccccccccccccccccccccccccccccccccc$
SOL 8.66	Option (D) is correct. In the given circuit NMOS Q_1 and Q_3 makes an inverter circuit. Q_4 and Q_5 are in parallel works as an OR circuit and Q_2 is an output inverter. So output is $Q = \overline{X_1 + X_2} = X_1 \cdot \overline{X_2}$
SOL 8.67	Option (D) is correct. Let $Q(t)$ is the present state then from the circuit, $\begin{array}{c} X_1=1 \\ X_2=1 \\ Q(t) \\ Q(t) \\ \end{array}$ So, the next state is given by $Q(t+1)=\overline{Q}(t)$ (unstable)
SOL 8.68	Option (B) is correct. Trans-conductance of MOSFET is given by ∂i_{P}

$$g_m = rac{\partial i_D}{\partial V_{GS}}$$

$$=\frac{(2-1) \text{ mA}}{(2-1) \text{ V}} = 1 \text{ mS}$$

SOL 8.69 Option (D) is correct. Voltage gain can be obtain by small signal equivalent circuit of given amplifier.

In the circuit

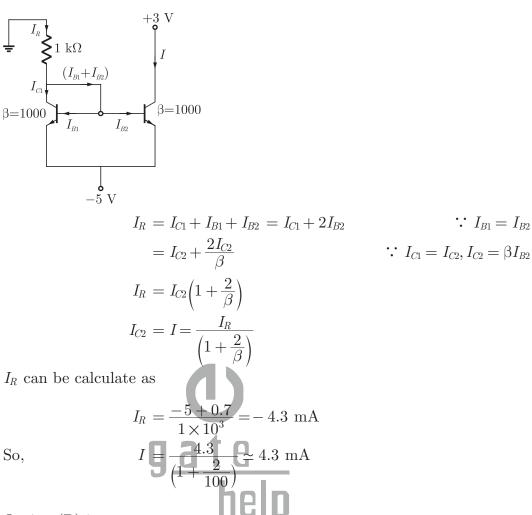
 $V_1 = 3.5 \, V \, (given)$

Current in zener is.

$$I_Z = \frac{V_1 - V_Z}{R_Z} = \frac{3.5 - 3.3}{0.1 \times 10^3} = 2 \text{ mA}$$

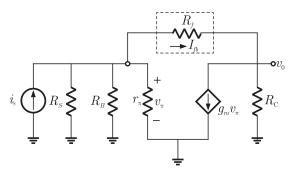
Option (C) is correct. SOL 8.71

> This is a current mirror circuit. Since V_{BE} is the same in both devices, and transistors are perfectly matched, then


 $I_{B1} = I_{B2}$ and $I_{C1} = I_{C2}$ From the circuit we have,

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia Published by: NODIA and COMPANY ISBN: 9788192276243 Visit us at: www.nodia.co.in

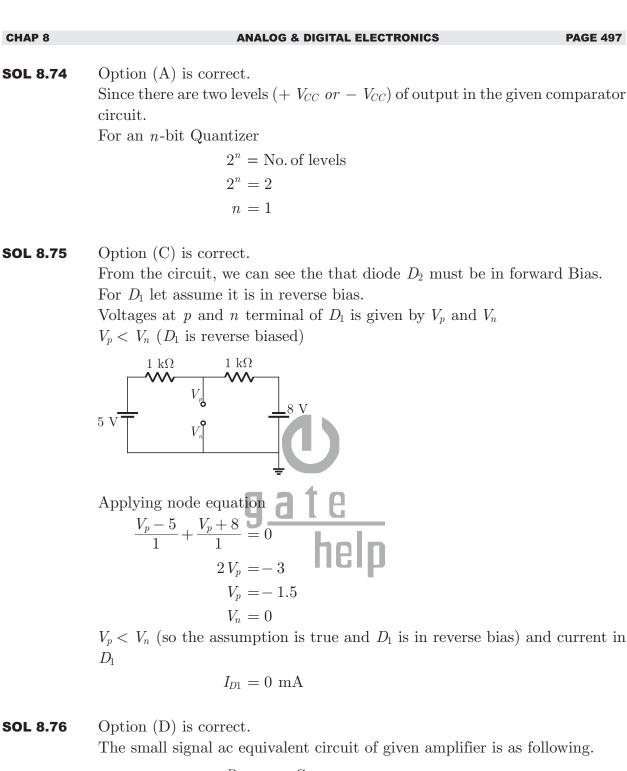
CHAP 8

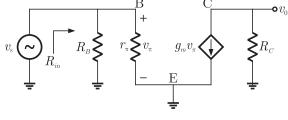

ANALOG & DIGITAL ELECTRONICS

CHAP 8

SOL 8.72 Option (B) is correct.

The small signal equivalent circuit of given amplifier


Here the feedback circuit samples the output voltage and produces a feed back current I_{fb} which is in shunt with input signal. So this is a shunt-shunt feedback configuration.


SOL 8.73 Option (A) is correct.

In the given circuit output is stable for both 1 or 0. So it is a bistable multi-vibrator.

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia			
Published by: NODIA and COMPANY	ished by: NODIA and COMPANY ISBN: 9788192276243		
Visit us at: www.nodia.co.in			

PAGE 497

Here

 $R_B = (10 \text{ k}\Omega \parallel 10 \text{ k}\Omega) = 5 \text{ k}\Omega$

ANALOG & DIGITAL ELECTRONICS

CHAP 8

$$g_{m} = 10 \text{ ms}$$

$$\therefore g_{m} r_{\pi} = \beta \Rightarrow r_{\pi} = \frac{50}{10 \times 10^{-3}} = 5 \text{ k}\Omega$$
Input resistance
$$R_{m} = R_{B} | r_{\pi} = 5 \text{ k}\Omega | 5 \text{ k}\Omega = 2.5 \text{ k}\Omega$$
Sol 8.77 Option (D) is correct.
For PMOS to be biased in non-saturation region.
$$V_{SD} < V_{SD(mt)}$$
and
$$V_{SD(mt)} = V_{SC} + V_{T}$$

$$V_{SD(mt)} = 4 - 1$$

$$= 3 \text{ Volt}$$
So,
$$V_{SD} < 3$$

$$V_{S} - V_{D} < 3$$

$$4 - I_{D}R < 3$$

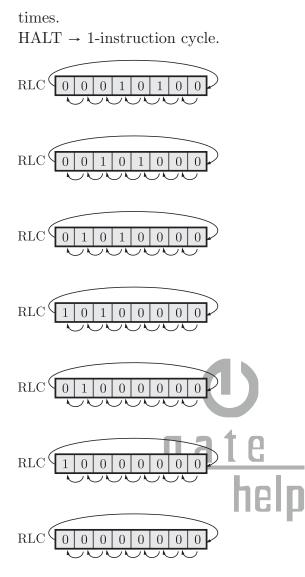
$$1 < I_{D}R$$

$$I_{D}R > 1,$$

$$I_{D} = 1 \text{ mA}$$

$$R > 1000 \Omega$$
Sol 8.78 Option () is correct.
If op-amp is ideal, no current will enter in op-amp. So current i_{π} is
$$i_{\pi} = \frac{v_{\pi} - v_{y}}{1 \times 10^{6}} \qquad \dots(1)$$

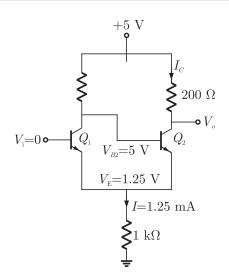
$$v_{\pi} = v_{\pi} = v_{\pi} \qquad (\text{ideal op-amp})$$


$$\frac{v_{\pi} - v_{y}}{10 \times 10^{3}} = 0$$

$$v_{\pi} - v_{y} + 10v_{\pi} = 0$$

$$1 = v_{\pi} = \frac{10v_{\pi}}{10^{6}}$$
Input impedance of the circuit.
$$R_{w} = \frac{v_{\pi}}{i_{\pi}} = -\frac{10^{6}}{10} = -100 \text{ k}\Omega$$

CHAP 8	ANALOG & DIGITAL ELECTRONICS PAGE 499
SOL 8.80	Option (A) is correct. Given Boolean expression, $Y = (\overline{A} \cdot BC + D) (\overline{A} \cdot D + \overline{B} \cdot \overline{C})$ $= (\overline{A} \cdot BCD) + (\overline{A}BC \cdot \overline{B} \cdot \overline{C}) + (\overline{A}D) + \overline{B} \ \overline{C}D$ $= \overline{A} \ BCD + \overline{A}D + \overline{B} \ \overline{C} \ D$ $= \overline{A}D(BC+1) + \overline{B} \ \overline{C}D = \overline{A}D + \overline{B} \ \overline{C} \ D$
SOL 8.81	Option (D) is correct. In the given circuit, output is given as. $Y = (A_0 \oplus B_0) \odot (A_1 \oplus B_1) \odot (A_2 \oplus B_2) \odot (A_3 \oplus B_3)$ For option (A) $Y = (1 \oplus 1) \odot (0 \oplus 0) \odot (1 \oplus 1) \odot (0 \oplus 0)$ $= 0 \odot 0 \odot 0 \odot 0 \odot 0 = 1$ For option (B) $Y = (0 \oplus 0) \odot (1 \oplus 1) \odot (0 \oplus 0) \odot (1 \oplus 1)$ $= 0 \odot 0 \odot 0 \odot 0 \odot 0 = 1$ For option (C) $Y = (0 \oplus 0) \odot (0 \oplus 0) \odot (1 \oplus 1) \odot (0 \oplus 0)$ $= 0 \odot 0 \odot 0 \odot 0 = 1$ For option (D) $Y = (1 \oplus 1) \odot (0 \oplus 0) \odot (1 \oplus 1) \odot (0 \oplus 1)$ $= 0 \odot 0 \odot 0 \odot 1 = 0$
SOL 8.82	Option (B) is correct. In the given circuit, waveforms are given as, $CLK \qquad \qquad$
SOL 8.83	Option (C) is correct. The program is executed in following steps. START MVI A, 14H \rightarrow one instruction cycle. RLC \Rightarrow rotate accumulator left without carry RLC is executed 6 times till value of accumulator becomes zero. JNZ, JNZ checks whether accumulator value is zero or not, it is executed 5 GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia Published by: NODIA and COMPANY ISBN: 9788192276243 Visit us at: www.nodia.co.in


So total no. of instruction cycles are

$$n = 1 + 6 + 5 + 1$$

= 13

SOL 8.84 Option (B) is correct. In the given circuit $V_i = 0$ V So, transistor Q_1 is in cut-off region and Q_2 is in saturation. $5 - I_C R_C - V_{CE(sat)} - 1.25 = 0$ $5 - I_C R_C - 0.1 - 1.25 = 0$ $5 - I_C R_C - 0.1 - 1.25 = 0$ $5 - I_C R_C = 1.35$ $V_0 = 1.35$ {:: $V_0 = 5 - I_C R_C$

ANALOG & DIGITAL ELECTRONICS

PAGE 501

SOL 8.85 Option (C) is correct. Since there exists a drain current for zero gate voltage ($V_{GS} = 0$), so it is a depletion mode device. I_D increases for negative values of gate voltages so it is a *p*-type depletion mode device.

SOL 8.86 Option (B) is correct.
Applying KVL in input loop, **1**

$$4 - (33 \times 10^3) I_B - V_{BE} - (3.3 \times 10^3) I_E = 0$$

 $4 - (33 \times 10^3) I_B - 0.7 - (3.3 \times 10^3) (h_{fe} + 1) I_B = 0$
 $3.3 = [(33 \times 10^3) + (3.3 \times 10^3) (99 + 1)] I_B$
 $I_B = \frac{3.3}{33 \times 10^3 + 3.3 \times 10^3 \times 100}$
 $I_C = h_{fe} I_B$
 $= \frac{99 \times 3.3}{[0.33 + 3.3] \times 100}$ mA $= \frac{3.3}{0.33 + 3.3}$ mA

SOL 8.87 Option (D) is correct. Let the voltages at positive and negative terminals of op-amp are v_+ and v_- respectively. Then by applying nodal equations.

$$\frac{v_{-} - v_{in}}{R_1} + \frac{v_{-} - v_{out}}{R_1} = 0$$

2 v_{-} = v_{in} + v_{out} ...(1)

Similarly,

$$\frac{v_+ - v_{in}}{R} + \frac{v_+ - 0}{\left(\frac{1}{j\omega C}\right)} = 0$$

ANALOG & DIGITAL ELECTRONICS

 $v_{+} - v_{in} + v_{+}(j\omega CR) = 0$ $v_{+}(1 + j\omega CR) = V_{in}$...(2)

By equation (1) & (2)

$$\frac{2v_{in}}{1+j\omega CR} = v_{in} + v_{out} \qquad \{\because v_+ = v. \text{ (ideal op-amp)} \\ v_{in} \Big[\frac{2}{1+j\omega CR} - 1 \Big] = v_{out} \\ v_{out} = v_{in} \frac{(1-j\omega CR)}{1+j\omega CR}$$

Phase shift in output is given by

$$\theta = \tan^{-1}(-\omega CR) - \tan^{-1}(\omega CR)$$
$$= \pi - \tan^{-1}(\omega CR) - \tan^{-1}(\omega CR)$$
$$= \pi - 2\tan^{-1}(\omega CR)$$
$$\theta = \pi$$

Maximum phase shift θ

SOL 8.88 Option (C) is correct.

In given circuit MUX implements a 1-bit full adder, so output of MUX is given by.

$$F = \operatorname{Sum} = \operatorname{A} \oplus \operatorname{Q} \oplus \operatorname{C}_{in}$$

Truth table can be obtain as.4

Р	Q	C_{in}	G _{Sum}
0	0	0	
0	0	1	IGIH
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

 $\operatorname{Sum} = \overline{P} \ \overline{Q} \ C_{in} + \overline{P} Q \ \overline{C_{in}} + P \ \overline{Q} \ \overline{C_{in}} + P \ Q \ C_{in}$

Output of MUX can be written as

$$F = \overline{P} \ \overline{Q} \cdot I_0 + \overline{P} Q \cdot I_1 + P \overline{Q} \cdot I_2 + P Q \cdot I_3$$

Inputs are,

$$I_0 = C_{in}, I_1 = \overline{C_{in}}, I_2 = \overline{C_{in}}, I_3 = C_{in}$$

SOL 8.89 Option (D) is correct.

Program counter contains address of the instruction that is to be executed next.

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY ISBN: 9788192276243		
Visit us at: www.nodia.co.in		

CHAP 8

ANALOG & DIGITAL ELECTRONICS

PAGE 503

SOL 8.90Option (A) is correct.For a *n*-channel enhancement mode MOSFET transition point is given by,

$$V_{DS(\mathrm{sat})} = V_{GS} - V_{TH}$$

 $V_{DS(\mathrm{sat})} = V_{GS} - 2$
 \cdots $V_{TH} = 2$ volt

From the circuit,

So $V_{DS} = V_{GS}$ $V_{DS(sat)} = V_{DS} - 2 \implies V_{DS} = V_{DS(sat)} + 2$ $V_{DS} > V_{DS(sat)}$

Therefore transistor is in saturation region and current equation is given by.

$$I_D = K(V_{GS} - V_{TH})^2$$

4 = K(V_{GS} - 2)^2

 V_{GS} is given by

So,

So,

$$V_{GS} = V_{DS} = 10 - I_D R_D = 10 - 4 \times 1 = 6$$
 Volt
 $4 = K(6-2)^2$
 $K = \frac{1}{4}$

Now R_D is increased to 4 k Ω , Let current is I_D and voltages are $V'_{DS} = V'_{GS}$ Applying current equation.

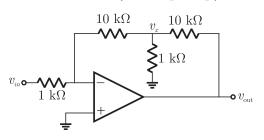
$$I_{D} = K(V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{4}(V_{GS} - 2)^{2}$$

$$V_{GS} = V_{DS} = 10 - I_{D} \times R_{D}^{i} = 10 - 4I_{D}^{i}$$

$$4I_{D}^{i} = (10 - 4I_{D}^{i} - 2)^{2} = (8 - 4I_{D}^{i})^{2}$$

$$= 16(2 - I_{D}^{i})^{2}$$


$$I_{D} = 4(4 + I_{D}^{2} - 4I_{D}^{i})$$

$$4I_{D}^{2} - 17 + 16 = 0$$

$$I_{D}^{2} = 2.84 \text{ mA}$$

SOL 8.91 Option (D) is correct.

Let the voltages at input terminals of op-amp are v_{-} and v_{+} respectively. So, $v_{+} = v_{-} = 0$ (ideal op-amp)

GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

CHAP 8

ANALOG & DIGITAL ELECTRONICS

CHAP 8

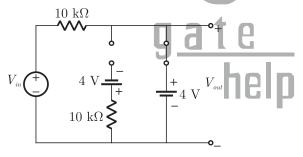
Applying node equation at negative terminal of op-amp,

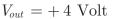
$$\frac{0 - v_{in}}{1} + \frac{0 - v_x}{10} = 0 \qquad \dots (1)$$

At node x

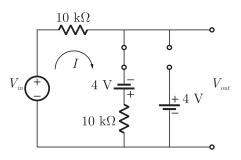
$$\frac{v_x - 0}{10} + \frac{v_x - v_{out}}{10} + \frac{v_x - 0}{1} = 0$$

$$v_x + v_x - v_{out} + 10v_x = 0$$


$$12 v_x = v_{out}$$


$$v_x = \frac{v_{out}}{12}$$
From equation (1),
$$\frac{v_{in}}{1} + \frac{v_x}{10} = 0$$

$$v_{in} = -\frac{v_{out}}{120}$$


$$\frac{v_{out}}{v_{in}} = -120$$

SOL 8.92 Option (D) is correct. In the positive half cycle (when $V_{in} > 4$ V) diode D_2 conducts and D_1 will be off so the equivalent circuit is,

In the negative half cycle diode D_1 conducts and D_2 will be off so the circuit is,

Applying KVL

$$V_{in} - 10I + 4 - 10I = 0$$

ANALOG & DIGITAL ELECTRONICS

PAGE 505

$$\frac{V_{in}+4}{20} = I$$

 $V_{in} = -10 \text{ V}$ (Maximum value in negative half cycle)

So,

$$I = \frac{-10+4}{20} = -\frac{3}{10} \text{ mA}$$

$$\frac{V_{in} - V_{out}}{10} = I$$

$$\frac{-10 - V_{out}}{10} = -\frac{3}{10}$$

$$V_{out} = -(10-3)$$

$$V_{out} = -7 \text{ volt}$$

SOL 8.93 Option (C) is correct.

In the circuit, the capacitor charges through resistor $(R_A + R_B)$ and discharges through R_B . Charging and discharging time is given as.

$$T_{C} = 0.693 (R_{A} + R_{B}) C$$

$$T_{D} = 0.693 R_{B} C$$
Frequency
$$f = \frac{1}{T} = \frac{1}{T_{D} + T_{C}} = \frac{1}{0.693 (R_{A} + 2R_{B}) C}$$

$$\frac{1}{0.693 (R_{A} + 2R_{B}) \times 10 \times 10^{-8}} = 10 \times 10^{3}$$

$$14.4 \times 10^{3} = R_{A} + 2R_{B} \qquad \dots(1)$$
duty cycle
$$= \frac{T_{C}}{T} = 0.75$$

$$\frac{0.693 (R_{A} + R_{B}) C}{0.693 (R_{A} + 2R_{B}) C} = \frac{3}{4}$$

$$4R_{A} + 4R_{B} = 3R_{A} + 6R_{B}$$

$$R_{A} = 2R_{B} \qquad \dots(2)$$
From (1) and (2)
$$2R_{A} = 14.4 \times 10^{3}$$

$$R_{A} = 7.21 \text{ k}\Omega$$

and

SOL 8.94 Option (B) is correct.

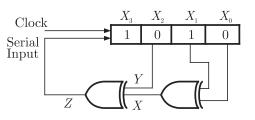
Given boolean expression can be written as,

$$F = \overline{X}Y\overline{Z} + \overline{X}\ \overline{Y}Z + X\overline{Y}Z + XY\overline{Z} + XYZ$$

$$= \overline{X}\ Y\overline{Z} + \overline{Y}Z(X + \overline{X}) + XY(\overline{Z} + Z)$$

$$= \overline{X}Y\overline{Z} + \overline{Y}Z + XY$$

$$= \overline{Y}Z + Y(X + \overline{X}\ \overline{Z}) \quad \because \quad A + BC = (A + B)(A + C)$$


 $R_B = 3.60 \text{ k}\Omega$

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY ISBN: 9788192276243		
Visit us at: www.nodia.co.in		

ANALOG & DIGITAL ELECTRONICS

 $= \overline{Y}Z + Y(X + \overline{X})(X + \overline{Z})$ $= \overline{Y}Z + Y(X + \overline{Z})$ $= \overline{Y}Z + YX + Y\overline{Z}$

SOL 8.95 Option (B) is correct.

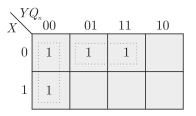
 $X = X_1 \oplus X_0, Y = X_2$

Serial Input $Z = X \oplus Y = [X_1 \oplus X_0] \oplus X_2$

Truth table for the circuit can be obtain as.

Clock pulse	Serial Input	Shift register
Initially	1	1010
1	- 0	1101
2	0	0110
3		0011
4		0001
5		1000
6		0100
7	1	1010

So after 7 clock pulses contents of the shift register is 1010 again.


SOL 8.96 Option (D) is correct.

Characteristic table of the X-Y flip flop is obtained as.

			<u> </u>
Х	Y	Q_n	Q_{n+1}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	0	0

PAGE 507

Solving from k-map

Characteristic equation of X-Y flip flop is

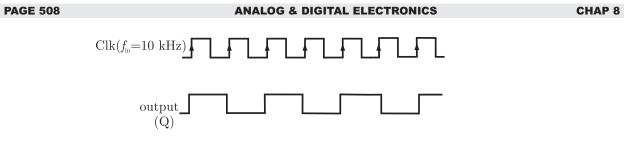
 $Q_{n+1} = \overline{Y} \, \overline{Q_n} + \overline{X} Q_n$ Characteristic equation of a J-K flip-flop is given by $Q_{n+1} = \overline{K} Q_n + J \, \overline{Q_n}$

by comparing above two characteristic equations

 $J = \overline{Y}, K = X$

SOL 8.97 Option (A) is correct.

Total size of the memory system is given by.

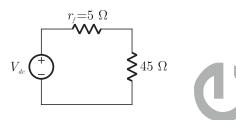

$$= (2^{12} \times 4) \times 8 \text{ bits}$$
$$= 2^{14} \times 8 \text{ bits}$$
$$= 2^{14} \text{ Bytes}$$
$$= 16 \text{ K bytes}$$

SOL 8.98 Option (C) is correct. Executing all the instructions one by one.

$$\begin{split} LXI \, H, 1FFE \Rightarrow H &= (1F)_{H}, \ L &= (FE)_{H} \\ MOV \quad B, M \Rightarrow B &= Memory [HL] &= Memory [1FFE] \\ INR \quad L \Rightarrow L &= L + (1)_{H} = (FF)_{H} \\ MOV \quad A, M \Rightarrow A &= Memory [HL] \quad = Memory [1FFF] \\ ADD \quad B \Rightarrow A &= A + B \\ INR \quad L \Rightarrow L &= L + (1)_{H} = (FF)_{H} + (1)_{H} = 00 \\ MOV \, M, A \Rightarrow Memory [HL] &= A \\ Memory [1F00] &= A \\ XOR \quad A \Rightarrow A &= A XOR \ A &= 0 \\ So \ the \ result \ of \ addition \ is \ stored \ at \ memory \ address \ 1F00. \end{split}$$

SOL 8.99 Option (D) is correct. Let the initial state Q(t) = 0, So $D = \overline{Q} = 1$, the output waveform is.

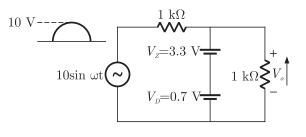
GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY ISBN: 9788192276243		
Visit us at: www.nodia.co.in		


So frequency of the output is,

$$f_{out} = \frac{f_{in}}{2} = \frac{10}{2} = 5 \text{ kHz}$$

SOL 8.100 Option (A) is correct. This is a half-wave rectifier circuit, so the DC voltage is given by

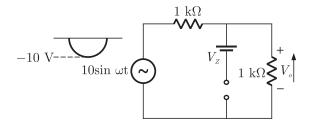
$$V_{dc} = \frac{V_m}{\pi}$$


Equivalent circuit with forward resistance is

DC current in the circuit $I_{dc} = \frac{V_m}{r_f + R} = \frac{(V_m/\pi)}{(5+45)}$ $I_{dc} = \frac{V_m}{50\pi}$

SOL 8.101 Option (B) is correct.

In the positive half cycle zener diode (D_z) will be in reverse bias (behaves as a constant voltage source) and diode (D) is in forward bias. So equivalent circuit for positive half cycle is.

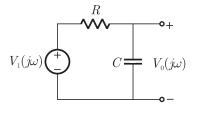


Output $V_o = V_D + V_z$ = 0.7 + 3.3= 4 Volt

In the negative halt cycle, zener diode (D_z) is in forward bias and diode (D)

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia		
Published by: NODIA and COMPANY	ISBN: 9788192276243	
Visit us at: www.nodia.co.in		

is in reverse bias mode. So equivalent circuit is.



So the peak output is,

 $V_o = \frac{10}{(1+1)} \times 1$ $V_o = 5 \text{ Volt}$

SOL 8.102 Option (A) is correct. For active low chip select $\overline{CS} = 0$, so the address range can be obtain as,

SOL 8.103 Option (C) is correct. A first order low pass filter is shown in following figure.

Transfer function

$$H(j\omega) = \frac{V_0(j\omega)}{V_1(j\omega)} = \frac{1}{R + \frac{1}{j\omega C}} \times \frac{1}{j\omega C} = \frac{1}{j\omega cR + 1}$$

Given that $|H(j\omega_1)| = 0.25$

$$\frac{1}{\sqrt{\omega_1^2 C^2 R^2 + 1}} = \frac{1}{4}$$

$$16 = \omega_1^2 R^2 C^2 + 1$$

$$\omega_1^2 R^2 C^2 = 15$$

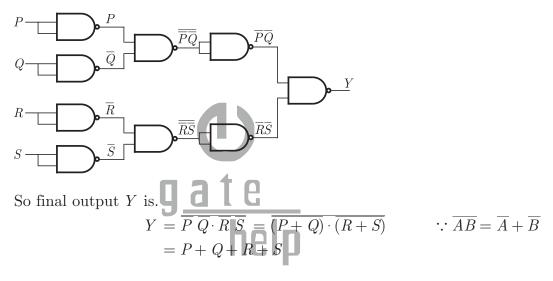
$$4\pi^2 f_1^2 (50)^2 (5 \times 10^{-6})^2 = 15$$

$$f_1 = 2.46 \text{ kHz}$$

ANALOG & DIGITAL ELECTRONICS

SOL 8.104Option (A) is correct.In the circuit, voltage at positive terminal of op-amp is given by

$$\frac{v_{+} - v_{o}}{10} + \frac{v_{+} - 2}{3} = 0$$
$$3(v_{+} - v_{o}) + 10(v_{+} - 2) = 0$$

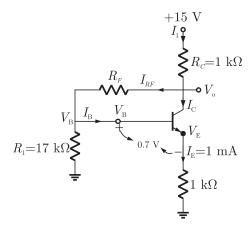

$$13v_{+} = 20 + 3v_{0}$$

Output changes from +15 V to -15 V, when $v_{-} > v_{+}$

$$v_{+} = \frac{20 + (3 \times 15)}{13} = 5$$
 Volt (for positive half cycle)

SOL 8.105 Option (B) is correct.

Output for each stage can be obtain as,



SOL 8.106 Option (B) is correct.

We can analyze that the transistor is in active region.

$$I_C = \frac{\beta}{(\beta+1)} I_E = \frac{99}{(99+1)} (1 \text{ mA}) = 0.99 \text{ mA}$$

In the circuit

V

In the circuit

$$V_{BE} = 0.7 \text{ V}$$

$$V_E = I_E \times 1 \text{ k}\Omega = 1$$

$$V_B - V_E = 0.7$$

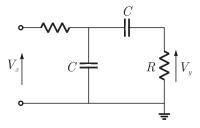
$$V_B = 0.7 + 1 = 1.7 \text{ volt}$$
Current through R_1

$$I_{R_1} = \frac{V_B}{17 \text{ k}\Omega} = \frac{1.7}{17 \text{ k}\Omega} = 100 \ \mu\text{A}$$

$$I_B = \frac{I_E}{\beta + 1} = \frac{1 \text{ mA}}{(99 + 1)} = 10 \ \mu\text{A}$$
Current through R_F , by writing KCL at Base
$$I_{RF} = I_B + I_{R1}$$

$$= 10 + 100 = 110 \ \mu\text{A}$$
Current through R_C

$$I_1 = I_C + I_{RF} = 0.99 \text{ mA} + 110 \ \mu\text{A} = 1.1 \text{ mA}$$
Option (D) is correct.
Output voltage
$$V_0 = 15 - I_1 R_C$$


$$I_1 = I_C + I_R = 0.99 \text{ mA} + 110 \ \mu\text{A} = 1.1 \text{ mA}$$
Option (A) is correct.
$$I_{RF} = \frac{V_0 - V_B}{R_F}$$

$$I_{RF} = \frac{V_0 - V_B}{R_F}$$

$$0.11 \text{ mA} = \frac{13.9 - 1.7 \text{ k}\Omega}{R_F}$$

$$0.11 \text{ mA} = \frac{13.9 - 1.7 \text{ k}\Omega}{R_F}$$
$$R_F = 110.9 \text{ k}\Omega$$

Option (A) is correct. SOL 8.109 By writing node equations in the circuit

GATE Previous Year Solved Paper By RK Kanodia & Ashish Murolia Published by: NODIA and COMPANY ISBN: 9788192276243 Visit us at: www.nodia.co.in

SOL 8.107

SOL 8.108

ANALOG & DIGITAL ELECTRONICS

CHAP 8

$$\frac{V_a - V_x}{R} + V_a Cs + (V_a - V_y) Cs = 0$$

$$V_a (1 + 2RCs) - V_x - sCRV_y = 0$$
...(1)

or

or

$$\left(V_y - V_a\right)Cs + \frac{V_y}{R} = 0$$

or

$$V_y(1 + sCR) - V_a sCR = 0 \qquad ...(2)$$

From equation (1) & (2)

....

. .

$$\left(\frac{1+sCR}{sCR}\right) (1+2sCR) V_y - V_x - sCR V_y = 0 V_y \left[\frac{(1+sCR)(1+2sCR)}{sCR} - sCR\right] = V_x V_y \frac{(1+3sCR+2s^2C^2R^2 - s^2C^2R^2)}{sCR} = V_x$$

Transfer function

$$T(s) = \frac{V_y}{V_x} = \frac{sCR}{1 + 3sCR + s^2 C^2 R^2}$$
$$T(j\omega) = \frac{j\omega CR}{1 + j3\omega CR - C^2 R^2 \omega^2} = \frac{j\omega CR}{(1 - C^2 R^2 \omega^2) + 3j\omega CR}$$

SOL 8.110 Option (A) is correct. Applying Barkhausen criterion of oscillation phase shift will be zero. $\angle T(j\omega_0) = 0$ $1 - C^2 R^2 \omega_0^2 = 0$ $\omega_0^2 = \frac{1}{R^2 C^2}$ $\omega_0 = \frac{1}{RC}$

$$V_{y} = \frac{V_{0}}{R_{F} + R}R$$

$$|T(j\omega)| = \frac{V_{y}}{V_{0}} = \left|\frac{j\omega_{0}CR}{1 - \omega_{0}^{2}C^{2}R^{2} + j3\omega_{0}CR}\right|$$

$$\omega = \frac{1}{RC}$$

$$\frac{V_{y}}{V_{0}} = \frac{j}{3j} = \frac{1}{3}$$

$$R = -1$$

So,

$$\frac{\kappa}{R_F + R} = \frac{1}{3}$$
$$R_F = 2R = 2 \times 1 = 2 \text{ k}\Omega$$

ANALOG & DIGITAL ELECTRONICS

SOL 8.112Option (C) is correct.By writing truth table for the circuit

CLK	Q_2	Q_1	Q_0
Initially	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
	1	0	1

All flip flops are reset. When it goes to state 101, output of NAND gate becomes 0 or $\overline{CLR} = 0$, so all FFs are reset. Thus it is modulo 4 counter.

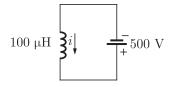
SOL 8.113 Option (A) is correct.

When the switch is closed (i.e. during T_{ON}) the equivalent circuit is

 $100 \text{ V} \stackrel{+}{-}$ $i \downarrow 3 100 \mu \text{H}$

Diode is off during $T_{\rm ON}$ writing KVL in the circuit. $100 - (100 \times 10^{-6}) \frac{di}{dt} = 0$ $\frac{di}{dt} = 10^{6}$

$$dt = \int 10^6 dt = 10^6 t + i(0)$$


Since initial current is zero i(0) = 0

So, $i = 10^6 t$

After a duration of T_{ON} the current will be maximum given as

$$T_{\rm Peak} = 10^6 T_{\rm ON}$$

When the switch is opened (i.e. during T_{off}) the equivalent circuit is

Diode is ON during T_{off} , writing KVL again

$$500 = -(100 \times 10^{-6})\frac{di}{dt}$$
$$i = -5 \times 10^{6}t + i(0)$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

CS

ANALOG & DIGITAL ELECTRONICS

CHAP 8

$$i(0) = i_p = 10^6 T_{\rm ON}$$

 $\operatorname{So},$

$$i = -5 \times 10^6 t + 10^6 T_{\rm ON}$$

After a duration of T_{off} , current i = 0

So,

$$0 = -5 \times 10^{6} t \operatorname{T_{off}} + 10^{6} \operatorname{T_{ON}}$$

$$\Rightarrow \qquad \operatorname{T_{ON}} = 5 \operatorname{T_{off}}$$

Given that

$$T_{ON} + T_{off} = 100 \ \mu \sec$$

 $T_{ON} + \frac{T_{ON}}{5} = 100 \ \mu \sec$
 $T_{ON} = \frac{100}{1.2} = 63.33 \ \mu \sec$

Peak current

$$i_p = 10^6 \times 1_{\text{ON}}$$

= 63.33 × 10⁻⁶ × 10⁶ = 63.33 A

SOL 8.114 Option (C) is correct.

When the switch is opened, current flows through capacitor and diode is ON in this condition.

so the equivalent circuit during T_{OFF} is

$$I = C \frac{dV_c}{dt}$$
$$V_c = \frac{I}{C}t + V_c(0)$$

 \Rightarrow

Initially $V_c(0) = 0$

At

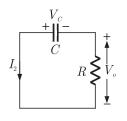
$$t = T_{\text{off}}$$
$$V_c = \frac{I}{C} T_{\text{off}}$$

 $V_c = \frac{I}{C}t$

Duty cycle

$$D = \frac{T_{\rm ON}}{T_{\rm ON} + T_{\rm OFF}} = \frac{T_{\rm ON}}{T}$$
$$T_{\rm ON} = DT$$
$$T_{\rm OFF} = T - T_{\rm ON} = T - DT$$

ANALOG & DIGITAL ELECTRONICS


So,

$$V_c = \frac{I}{C}(T - DT)$$
$$= \frac{I}{C}(1 - D) T$$

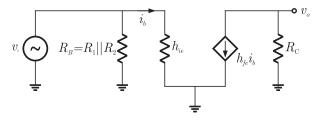
During T_{OFF} , output voltage $V_0 = 0$ volt.

SOL 8.115 Option (B) is correct.

When the switch is closed, diode is off and the circuit is

In steady state condition

$$C \frac{dV_c}{dt} = I_2$$


$$I_2 = C \frac{I}{C}$$

$$V_0 = -V_c = -\frac{I}{C} t$$
Average output voltage
$$V_0 = \frac{1}{T} \left[\int_0^{DT = T_{\text{ON}}} \left(-\frac{I}{C} t \right) dt + \int_0^{T_{\text{OFF}}} 0 dt \right]$$

$$= -\frac{1}{T} \cdot \frac{I}{C} \left[\frac{t^2}{2} \right]_0^{DT} = -\frac{1}{T} \cdot \frac{I}{C} \cdot \frac{D^2 T^2}{2} = -\frac{I}{C} \frac{D^2}{2} \cdot T$$

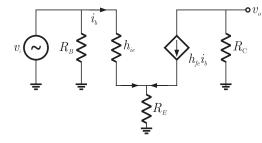
SOL 8.116 Option (B) is correct.

Equivalent hybrid circuit of given transistor amplifier when R_E is by passed is shown below.

In the circuit

$$i_b = \frac{v_s}{h_{ie}} \qquad \dots(1)$$
$$v_o = h_{fe} i_b . R_C = h_{fe} . \frac{v_s}{h_{ie}} . R_C$$

GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243


PAGE 515

ANALOG & DIGITAL ELECTRONICS

CHAP 8

Voltage gain
$$A_{v_i} = \frac{v_o}{v_i} = \frac{h_{fe}R_C}{h_{ie}}$$

Equivalent hybrid circuit when R_E is not bypassed by the capacitor.

In the circuit

$$v_s=i_b\,h_{ie}+\left(i_b+h_{fe}\,i_b
ight)R_E$$

$$v_s = i_b [h_{ie} + (1 + h_{fe}) R_E] \qquad \dots (2)$$

$$v_0 = h_{fe} i_b . R_C \qquad \dots (3)$$

from equation (2) and (3)

$$v_{0} = h_{fe} \cdot R_{C} \frac{v_{s}}{h_{ie} + (1 + h_{fe}) R_{E}}$$
Voltage gain, $Av_{2} = \frac{v_{0}}{v_{s}} = \frac{h_{fe} R_{C}}{h_{ie} + (1 + h_{fe}) R_{E}}$
So $\frac{Av_{1}}{Av_{2}} = \frac{h_{ie} + (1 + h_{fe}) R_{E}}{A_{v_{2}} < A_{v_{1}}} \frac{1 + \frac{(1 + h_{fe}) R_{E}}{h_{ie}}}{h_{ie}}$

SOL 8.117 Option (C) is correct. Conversion time for different type of ADC is given as Counting type $T_T \rightarrow$ Conversion time $T_T = 2^n T_C$ $T_C \rightarrow$ Clock period

Integrating type

$$T_T = 2^{n+1} T_C$$

Successive Approximation type

$$T_T = n T_C$$

Parallel (flash) type \rightarrow fastest Conversion time is highest for integrating type ADC. So it is slowest.

SOL 8.118 Option (D) is correct.

 $F = \overline{A + B}$ (NOR) Output is 1 when A = B = 0OR, $F = A \odot B$ (Ex-NOR) Output is 1 when A = B = 0

CHAP 8	
--------	--

ANALOG & DIGITAL ELECTRONICS

PAGE 517

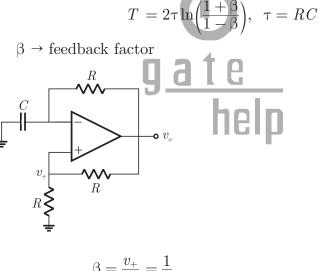
SOL 8.119 Option (B) is correct. Output of the multiplexer is written as

So,

$$f = I_0 \overline{S_1} \overline{S_0} + I_1 \overline{S_1} S_0 + I_2 S_1 \overline{S_0} + I_3 S_1 S_0$$

$$I_0 = 0, I_1 = I_2 = I_3 = 1$$

$$f = 0 + \overline{x} y + x \overline{y} + x \overline{y} = \overline{x} \overline{y} + x \overline{y} + x \overline{y}$$


$$= \overline{x} \overline{y} + x (\overline{y} + \overline{y}) = \overline{x} \overline{y} + x \qquad \because \overline{y} + \overline{y} = 1$$

$$= (\overline{x} + x) (x + y) \qquad A + BC = (A + B) (A + C)$$

$$= x + y \qquad \because \overline{x} + x = 1$$

SOL 8.120 Option (C) is correct. Since gain-bandwidth product remains constant Therefore $10^5 \times 10 = 100 \times f_{CL}$ $f_{CL} = 10 \text{ kHz}$

SOL 8.121 Option (B) is correct. Given circuit is an astable multi vibrator circuit, time period is given as

$$\beta = \frac{1}{v_o} = \frac{1}{2}$$
$$T = 2\tau \ln\left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right) = 2\tau \ln 3$$

So,

SOL 8.122 Option (C) is correct. MVI A 10 H \Rightarrow N

MVI A, 10 H
$$\Rightarrow$$
 MOV (10)_H in accumulator
A =(10)H
MVI B, 10 H \Rightarrow MOV (10)_H in register B
B = (10)_H

PAGE 518

BACK : NOP $ADDB \Rightarrow Adds$ contents of register B to accumulator and result stores in accumulator $A = A + B = (10)_{\rm H} + (10)_{\rm H}$ 0 0 0 1 0 0 0ADD 000 10000 $A = 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0$ $=(20)_{\rm H}$ $RLC \Rightarrow Rotate$ accumulator left without carry CY=0 acc 0 0 10 0 0 0 0 $A = (40)_{\rm H}$ RLC 0 0 1 0 0 0 0 0 JNC BACK \Rightarrow JUMP TO Back if CY = 0NOP ADD B \Rightarrow A = A + B $= (40)_{\rm H} + (10)_{\rm H}$ 0100 0000 ADD 0001 0000 A = 0 1 0 1 0 0 0 0 $= (60)_{\rm H}$ 0 1 0 1 0 0 0 0 RLC 0 0 0 0 CY=00 0 Α 1 1 $A = (A0)_{H}$ JNC BACK NOP $ADDB \Rightarrow A = A + B$ $= (A0)_{\rm H} + (10)_{\rm H}$ 1010 0000 ADD 0001 0000 $A = 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0$ $A = (B0)_{H}$ CY=00 0 0 0 0 1 1 RLC A 0 1 1 0 0 0 0 CY=10

CHAP 8

PAGE 519

CY = 1 So it goes to HLT. therefore NOP will be executed 3 times.

SOL 8.123 Option (D) is correct. Leakage current is given by

$$I_{\text{Leakage}} = \frac{Q'}{t} = \frac{0.5 \times \frac{1}{100} \times Q}{t} = \frac{0.5 \times \frac{1}{100} \times CV}{t}$$
$$= \frac{0.5 \times 10^{-2} \times 0.1 \times 10^{-9} \times 5}{1 \times 10^{-6}}$$
$$= \frac{25 \times 10^{-13}}{10^{-6}} = 2.5 \times 10^{-6} = 2.5 \,\mu\text{A}$$

SOL 8.124 Option (A) is correct.Slew rate is defined as the maximum rate of change in output voltage per unit time.

Slew rate
$$= \frac{dv_0}{dt}$$

For voltage follower, $v_0 = v_{in}$
So, Slew rate $= \frac{dv_{in}}{dt}$, $v_{in} = 10 \sin \omega t$
 $\mathbf{G} = \frac{d}{dt} (10 \sin \omega t) = 10\omega \cos \omega t$
 $= 10\omega = 62.8 \text{ volt}/\mu \text{sec (given)}$
 $10 \times 2\pi f = 62.8 \times 10^6$
 $f = \frac{62.8 \times 10^6}{62.8} = 1 \text{ MHz}$

SOL 8.125 Option (C) is correct.

Trans conductance of an n-channel JFET, is given by.

$$g_m = rac{\partial I_{DS}}{\partial V_{GS}} = rac{-2I_{DSS}}{V_P} \Big(1 - rac{V_{GS}}{V_P}\Big)$$

Trans conductance (g_m) is maximum when gate - to - source voltage

$$V_{GS} = 0$$

$$(g_m)_{\text{max}} = \frac{-2I_{DSS}}{V_P}$$

$$(1 \quad V_{GS})$$

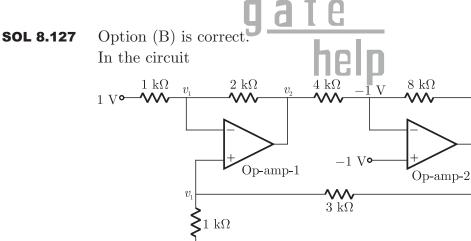
So,

$$g_m = (g_m)_{\max} \left(1 - \frac{V_{GS}}{V_P} \right)$$

$$1 = (g_m)_{\max} \left[1 - \frac{(-3)}{(-5)} \right] = (g_m)_{\max} \times \frac{2}{5}$$

$$(g_m)_{\max} = \frac{5}{2} = 2.5$$

Here


SOL 8.126 Option () is correct. The circuit is a synchronous counter. Where input to the flip flops are

$$D_3 = \overline{Q_3 + Q_2 + Q_1}$$

 $D_2 = Q_3, \ D_1 = Q_2, \ D_0 = Q_1$

Truth table of the circuit can be drawn as

CLK	Q_3	Q_2	Q_1	Q_0
Initial state	1	1	1	0
1	0	1	1	1
2	0	0	1	1
3	0	0	0	1
4	1	0	0	0
5	0	1	0	0
6	0	0	1	0
7	0	0	0	1
8	1	0	0	0

From the truth table we can see that counter states at N = 4 and N = 8 are same. So mod number is 4.

Writing node equation in the circuit at the negative terminal of op amp-1

$$\frac{v_1 - 1}{1} + \frac{v_1 - v_2}{2} = 0$$

$$3v_1 - v_2 = 2$$
...(1)
Similarly, at the positive terminal of op amp-1

o V.

$$\frac{v_1 - v_o}{3} + \frac{v_1 - 0}{1} = 0$$

CHAP 8	ANALOG & DIGITAL ELECTRONICS	PAGE 521
	$4v_1 - v_o = 0$	(2)
	At the negative terminals of op-amp-2 $(1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	
	$\left(\frac{-1 - v_2}{4}\right) + \left(\frac{-1 - v_o}{8}\right) = 0$	
	$-2 - 2v_2 - 1 - v_o = 0$	
	$v_o + 2v_2 = -3$	(3)
	From equation (1) and (2)	
	$3\frac{v_o}{4} - 2v_2 = 1$	
	From equation (3)	
	$\frac{3}{4}v_o - 2(-3 - v_o) = 1$	
	$\frac{3}{4}v_o + v_o = -5$	
	$\frac{7}{4}v_o = -5$	
SOL 8.128	$v_o = -\frac{20}{7}$ volt Option (C) is correct. Small signal circuit is (mid-band frequency range)	
	$v_{i} \underbrace{\frown}_{\underline{v}_{n}} \overset{R_{B}}{\underset{\underline{v}_{n}}} + \underbrace{\begin{array}{c} \mathbf{g}_{a} 1 \mathbf{g}_{v} \\ \mathbf{g}_{m} v_{\pi} \end{array}}_{\underline{\mathbf{g}}_{m} v_{\pi}} \underbrace{\begin{array}{c} \mathbf{g}_{a} 1 \mathbf{g}_{v} \\ \mathbf{g}_{m} v_{\pi} \end{array}}_{\underline{\mathbf{g}}_{m} v_{\pi}} \underbrace{\begin{array}{c} \mathbf{g}_{a} 1 \mathbf{g}_{v} \\ \mathbf{g}_{m} v_{\pi} \end{array}}_{\underline{\mathbf{g}}_{m} v_{\pi}} \underbrace{\begin{array}{c} \mathbf{g}_{m} \mathbf{g}_{m} \mathbf{g}_{m} \\ \mathbf{g}_{m} v_{\pi} \end{array}}_{\underline{\mathbf{g}}_{m} v_{\pi}} \underbrace{\begin{array}{c} \mathbf{g}_{m} \mathbf{g}_{m} \mathbf{g}_{m} \\ \mathbf{g}_{m} \mathbf{g}_{m} \mathbf{g}_{m} \mathbf{g}_{m} \mathbf{g}_{m} \mathbf{g}_{m} \\ \mathbf{g}_{m} $	

 $C_E \rightarrow 0$, for mid-band frequencies

$$v_o = -g_m v_\pi R_C$$

In the input loop

$$v_{\pi} = \frac{v_i r_{\pi}}{R_B + r_{\pi}}$$

So,

$$v_o = \frac{-g_m R_C r_\pi v_i}{R_B + r_\pi}$$

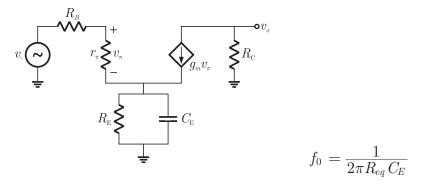
Gain

$$A_v = \frac{v_o}{v_i} = \frac{-g_m r_\pi R_C}{R_B + r_\pi}$$

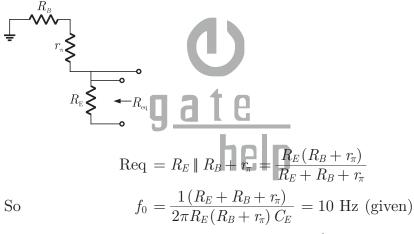
Trans-conductance

$$g_m = \frac{I_C}{V_T} = \frac{(1 \text{ mA})}{(26 \text{ mV})} = \frac{1}{26} \text{ A/V}$$

 $g_m r_\pi = \beta_0 \implies r_\pi = \frac{\beta_0}{g_m} = 200 \times 26 = 5.2 \text{ k}\Omega$


ANALOG & DIGITAL ELECTRONICS

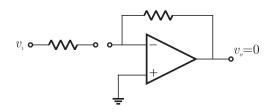
CHAP 8


So gain
$$A_v = \frac{-200 \times (1 \text{ k}\Omega)}{(25 \text{ k}\Omega + 5.2 \text{ k}\Omega)} = -6.62$$

SOL 8.129 Option (B) is correct.

Cut off frequency due to C_E is obtained as

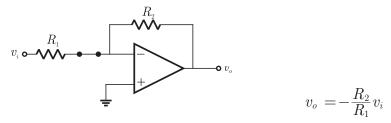
 $\operatorname{Req} \rightarrow \operatorname{Equivalent}$ resistance seen through capacitor C_E


So,
$$C_E = \frac{(0.1 + 25 + 5.2) \times 10^3}{2\pi \times 0.1 (25 + 5.2) \times 10^6} = 1.59 \text{ mF}$$

SOL 8.130 Option (D) is correct.

We can approximately analyze the circuit at low and high frequencies as following.

For low frequencies $\omega \to 0 \Rightarrow \frac{1}{\omega_c} \to \infty$ (i.e. capacitor is open)


Equivalent circuit is

GATE Previous Year Solved Paper By RK Kanodia & Ashish MuroliaPublished by: NODIA and COMPANYISBN: 9788192276243Visit us at: www.nodia.co.inISBN: 9788192276243

PAGE 522

So, it does not pass the low frequencies. For high frequencies $\omega \to \infty \Rightarrow \frac{1}{\omega_c} \to 0$ (i.e. capacitor is short) Equivalent circuit is

So it does pass the high frequencies. This is a high pass filter.

SOL 8.131 At high frequency $\omega \to \infty \Rightarrow \frac{1}{\omega_c} \to 0$, capacitor behaves as short circuit and gain of the filter is given as

$$|A_v| = \left| -\frac{R_2}{R_1} \right| = 10$$

 $R_{2} = 10 R_{1}$ Input resistance of the circuit $R_{in} = R_{1} = 100 \text{ k}\Omega$ So, $R_{2} = 10 \times 100 \text{ k}\Omega = 1 \text{ M}\Omega$ Transfer function of the circuit $\frac{V_{o}(j\omega)}{V_{i}(j\omega)} = \frac{-j\omega R_{2}C}{1+j\omega R_{1}C}$ High frequency gain $|A_{v\infty}| = 10$

At cutoff frequency gain is

$$|A_v| = \frac{10}{\sqrt{2}} = \left|\frac{-j\omega_c R_2 C}{1+j\omega_c R_1 C}\right|$$
$$\frac{10}{\sqrt{2}} = \frac{\omega_c R_2 C}{\sqrt{1+\omega_c^2 R_1^2 C^2}}$$
$$100 + 100\omega_c^2 R_1^2 C^2 = 2\omega_c^2 R_2^2 C^2$$
$$100 + 100 \times \omega_c^2 \times 10^{10} \times C^2 = 2 \times \omega_c^2 \times 10^{12} \times C^2$$
$$100 = \omega_c^2 C^2 \times 10^{12}$$
$$C^2 = \frac{100}{\omega_c^2 \times 10^{12}}$$
$$C = \frac{1}{2\pi f_c \times 10^4} = \frac{1}{2 \times 3.14 \times 10^3 \times 10^4}$$
$$= 15.92 \text{ nF}$$

GATE Multiple Choice Questions For Electrical Engineering

By RK Kanodia & Ashish Murolia

Available in Two Volumes

Features:

- The book is categorized into chapter and the chapter are sub-divided into units
- Unit organization for each chapter is very constructive and covers the complete syllabus
- Each unit contains an average of 40 questions
- The questions match to the level of GATE examination
- Solutions are well-explained, tricky and consume less time. Solutions are presented in such a way that it enhances you fundamentals and problem solving skills
- There are a variety of problems on each topic
- Engineering Mathematics is also included in the book

Contents

VOLUME-1

UNIT 1	ELECTRIC CIRCUITS & FIELDS	
	1.1 Basic Concepts	1-20
	1.2 Graph Theory	21-42
	1.3 Methods of Analysis	43-63
	1.4 Circuit Theorems	64-85
	1.5 Transient Response	86-113
	1.6 Sinusoidal Steady State Analysis	114-131
	1.7 Circuit Analysis In s-domain	132-151
	1.8 Magnetically Coupled Circuits	152-171
	1.9 Two-port Network	172-192
	1.10 Frequency Response	193-205
	1.11 Three-phase Circuits	206-218
		219-236

UNIT 2 SIGNALS & SYSTEMS

2.1 Continuous-Time Signals	237-261
2.2 Continuous-Time Systems	262-281
2.3 Discrete-Time Signal	282-311
2.4 Discrete-Time System	312-331
2.5 The Laplace Transform	332-344
2.6 The Z-transform	345-360
2.7 The Continuous-Time Fourier Transform	361-376
2.8 The Continuous-Time Fourier Series	377-396
2.9 Sampling	397-408

UNIT 3 ELECTRICAL MACHINES

3.1 Transformer	409-438
3.2 DC Generator	439-463
3.3 DC Motor	464-492
3.4 Synchronous Generator	493-519
3.5 Synchronous Motor	520-539
3.6 Induction Motor	540-564
3.7 Single Phase Induction Motor & Special Purpose	565-581
Machines	

UNIT 4 POWER SYSTEM

4.1 Fundamentals of Power Systems	583-607
4.2 Characteristics & Performance of Transmission Lines	608-645
4.3 Load Flow Studies	646-659
4.4 Symmetrical Fault Analysis	660-687
4.5 Symmetrical Components & Unsymmetrical Fault Analysis	688-715
4.6 Power System Stability & Protection	716-740
4.7 Power System Control	741-760
ANSWER KEY	

VOLUME-2

UNIT 5	CONTROL SYSTEM	
	5.1 Transfer Function	3-24
	5.2 Stability	25-44
	5.3 Time Response	45-65
	5.4 The Root-Locus Technique	66-87
	5.5 Frequency Domain Analysis	88-109
	5.6 Design of Control System	110-114
	5.7 The State Variable Analysis	115-140

UNIT 6 ELECTRICAL & ELECTRONIC MEASUREMENTS

6.1 Measurement & Error	143-159
6.2 Electromechanical Instruments	160-203
6.3 Instrument Transformer	204-211
6.4 Electronic & Digital Instruments	212-218
6.5 Measurement of R, L, C & AC Bridges	219-240
6.6 CRO	241-257

UNIT 7 ANALOG & DIGITAL ELECTRONICS

261-285
286-319
320-342
343-380
381-402
403-425
426-454
455-472
473-495

8	POWER ELECTRONICS	
	8.1 Power Semiconductor Devices	499-509
	8.2 Diode Circuits & Rectifiers	510-516
	8.3 Thyristor	517-532
	8.4 Phase Controlled Converters	533-560
	8.5 Choppers	561-575
	8.6 Inverters	576-592
	8.7 AC & DC Drives	593-603

UNIT 9 ENGINEERING MATHEMATICS

UNIT

9.1 Linear Algebra 607-6	120
9.2 Differential Calculus 627-0	550
9.3 Integral Calculus 651-6	571
9.4 Differential Equation 672-0	592
9.5 Complex Variable 693-	711
9.6 Probability & Statistics 712-7	'30
9.7 Numerical Methods 731-7	'45

Exclusive Series By Jhunjhunuwala

GATE CLOUD

By R. K . Kanodia & Ashish Murolia

GATE Cloud is an exclusive series of books which offers a completely solved question bank to GATE aspirants. The book of this series are featured as

- > Over 1300 Multiple Choice Questions with full & detailed explanations.
- > Questions are graded in the order of complexity from basic to advanced level.
- Contains all previous year GATE and IES exam questions from various branches
- > Each question is designed to GATE exam level.
- > Step by step methodology to solve problems

Available Title In this series

- **Signals and Systems (For EC and EE)**
- Network Analysis (For EC)-- Available in 2 Volumes
- Electric Circuit and Fields (For EE) -- Available in two volumes
- Electromagnetic (For EC)

Upcoming titles in this series

- Digital Electronics (Nov 2012)
- Control Systems (Dec 2012)
- Communication Systems (Jan 2012)

Exclusive Series By Jhunjhunuwala

GATE GUIDE

Theory, Example and Practice By R. K. Kanodia & Ashish Murolia

GATE GUIDE is an exclusive series of books which provides theory, solved examples & practice exercises for preparing for GATE. A book of this series includes :

- > Brief and explicit theory
- > Problem solving methodology
- > Detailed explanations of examples
- > Practice Exercises

Available Title In this series

- Signals and Systems (For EC and EE)
- Network Analysis (For EC)
- **Electric Circuit and Fields (For EE)**

Upcoming titles in this series

- Digital Electronics(For EC and EE)
- **Control Systems (For EC and EE)**
- **Communication Systems (For EC and EE)**